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Abstract

Over the last few decades, networks have played an increasingly important role in

multiple scientific domains, ranging from social science to physics and computer

science. This thesis mainly focuses on three types of networks (citation networks,

social networks, and collaboration networks) by combining theories and methods

from network science, sociology, machine learning, and data science. Specifically, I

present four projects concerned with two research clusters: social capital and deep

learning. In the first project, I develop new measures of network effective size,

i.e., intra- and inter-brokerage based on non-topological properties of nodes in

directed and weighted networks, which can provide finer-grained perspectives on

social capital. In the second project, I explore the social capital of cities extracted

from the collaboration patterns of their resident scientists and their external

collaborators by combining four large-scale bibliometric data sets. Results suggest

that the relationship between the (internal or external) brokerage and scientific

performance of cities is moderated by internal or external strong ties and the

cities’ geographical diversity. In the third project, I show that the classification

performance of Graph Convolutional Networks (GCNs) is related to the alignment

among features, graph, and ground truth, which I quantify using a subspace

alignment measure corresponding to the Frobenius norm of the matrix of pairwise

chordal distances between three subspaces associated with the three ingredients.

The proposed measure is based on the principal angles between subspaces and has

both spectral and geometrical interpretations. In the fourth project, I show that, if

additional relational information is not available in the data set, one can improve

classification by constructing geometric graphs from the features themselves and
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using them within a GCN. I also show that such feature-derived graphs increase

the alignment of the data to the ground truth while improving class separation.
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Chapter 1

Introduction

Recently, as a result of the increasing availability of data and sophisticated big

data analytical tools, a new area called “computational social science” (Lazer et al.,

2009) has emerged lying at the intersection among computer science, network

science, statistics, and the social sciences. On the one hand, social scientists are

more interested in addressing substantive research questions associated with real-

world applications. On the other, scientists from computational disciplines (e.g.,

computer science, physics, and mathematics) contribute new advanced data-driven

computing and learning methods (e.g., artificial intelligence and network science),

which can potentially be applied to real-world applications. The interplay between

these two sources has been nurturing the development of computational social

science.

Network science plays an important role in the study of various research topics

within and beyond the computational social science. As economies and societies

worldwide are becoming increasingly globalised, it is crucial to understand the sys-
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tems where people, groups, and organisations interact with one another (Drucker,

1994; Harris, 2001). These systems can be represented as networks (called graphs

in the mathematical literature), in which nodes (or vertices) are joined by links (or

edges). The study of networks has attracted tremendous attention from various

disciplines because networks are ubiquitous, and many research questions can

be framed from a network-based perspective (Newman, 2018b; Vespignani, 2018;

Wasserman and Faust, 1994; Watts, 2004). For instance, the Internet can be seen

as a network in which the vertex is a computer or router, and the edge is a cable or

wireless data connection. In a citation network, the vertex is an article, a patent, or

a legal case, and the edge is a citation made by one vertex to another. In different

disciplines, vertices and edges may be referred to in different ways. In sociology,

vertices and edges are often called actors and ties, respectively. In computer

science, they are often called nodes and links. As a highly interdisciplinary and

fast-developing field, the study of networks is concerned with a variety of areas

of investigation, including the network analysis of groups, institutions and social

systems in sociology (Degenne and Forsé, 1999; Freeman, 2004; Lambiotte and

Panzarasa, 2009), the analysis of complex systems in physics (Newman, 2003),

graph theory in mathematics and computer science (Bollobás, 1998; Leskovec

et al., 2005), machine learning with graphs in artificial intelligence (Bronstein

et al., 2017), and network-based methods and theories in many other disciplines.
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1.1 Part I: Social capital

Among the various scholars that have been interested in networks over the years,

sociologists were among the first to propose network approaches to the study of

social systems. One of the earliest works in which the concept of the network was

proposed dates back to the 1930s (Roethlisberger and Dickson, 1939). Since then,

sociologists have developed the social network perspective, which is characterised

by an emphasis on the importance of social relationships among interacting actors

(e.g., individuals, firms, and organisations) and by the attempt to systematically

express theories, models, and applications in terms of relational concepts (Degenne

and Forsé, 1999; Wasserman and Faust, 1994). A paradigmatic orientation shared

by social network scholars is that social structure can be operationalised in terms

of relations among actors and can be seen as emerging from the regularities or

patterns generated by interactions among actors. In particular, a significant

concern in the social sciences has been to understand or predict how individual

behaviour is affected by the underlying social structure (Granovetter, 1985). To

this end, sociologists have proposed and developed a number of theories and

concepts, among which social capital (Coleman, 1988) plays a prominent role.

In the social sciences, social capital refers to the value that individuals or organisa-

tions can extract from their underlying social network structures within which they

are socially embedded (Lin, 2002). It is widely acknowledged that social capital

comes from the social network structure (Kilduff and Brass, 2010) which plays

an essential role in maintaining or hindering a wide range of performance-based

outcomes (Granovetter, 1977, 2005).
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1.1.1 Intra- and inter-brokerage in social networks

Despite the general agreement on the salience of social structure for social cap-

ital, what kind of social network structure is more beneficial to actors is still

controversial (Latora et al., 2013). In recent years, two opposing social structures

based on the ego-centred networks of nodes have been proposed (see Figure 1.1):

(i) closed structures in which the focal node (i.e., “ego”) is mainly embedded in

closed triangles; and (ii) open structures in which the ego is mainly surrounded

by otherwise disconnected others. In this thesis, I shall focus on open structures

through which a node is believed to have access to diverse views and information

such that it can enjoy higher brokerage opportunities (Burt, 2009).

1

Figure 1.1: An illustration of closed (left) and open (right) structures. The focal
node is surrounded by a dashed line.

The ideas related to open structures and brokerage have mainly been investigated

by Ronald Stuart Burt, an American sociologist at the University of Chicago. To

quantify the brokerage opportunities of a node within an open structure, Burt has

proposed a set of network measures among which network effective size has been

the one most widely used by scholars. Despite its popularity, it has been argued

that effective size, by solely considering the network structure while ignoring the

non-network attributes of the nodes, does not properly provide a comprehensive

perspective on nodes’ social capital (Aral and Van Alstyne, 2011; Fleming et al.,
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2007; Schilling and Fang, 2014; Shipilov and Li, 2008; Ter Wal et al., 2016; Uzzi,

1996). To address this limitation, in the project presented in Chapter 3, I propose

two sets of new brokerage measures (intra- and inter-brokerage) as a function of

a certain non-topological attributes of nodes by extending network effective size.

The proposed measures can be applied to most general directed and weighted

networks as well as to undirected and unweighted networks. This will allow us

to quantify finer-grained measures of social capital based on combinations of

topological and non-network attributes of nodes.

1.1.2 Network foundations of the scientific performance

of cities

In recent years, the unit of analysis of studies related to social capital has been

not only people or organisations but also geographical locations (Guan et al.,

2015; Hristova et al., 2016). In particular, in the research communities of the

“science of science” (Fortunato et al., 2018) and “research policy”, several recent

studies have explored the relationship between the social capital of countries or

institutions extracted from scientific collaboration networks and their scientific

performance (Cantner and Rake, 2014; Graf and Kalthaus, 2018; Guan et al.,

2016). However, it is surprising to see that there are very few studies focusing on

cities, considering the growing demand for more theoretical and empirical research

of scientific collaboration at the city level (Neal, 2011). Also, previous related

studies concerned with cities quantified the social capital of a city based on the

inter-city scientific collaboration network (Guan et al., 2015). Here I argue that

the inter-city collaboration network aggregated from the individual scientist level
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lacks the actual collaboration patterns of scientists within and across cities. To

address these limitations, Chapter 4 presents an empirical study where I examine

the relationship between sources of social capital (e.g., brokerage) of a city and

its scientific performance using large-scale bibliometric data sets. I apply the

geo-social network approach (Hristova et al., 2016) and measure the social capital

of a city based on the collaboration patterns among resident scientists and external

collaborators, respectively. The main results show that my proposed finer-grained

measures of social capital (e.g., internal brokerage and external brokerage) can

capture different perspectives of network collaboration patterns and may have

distinct associations with scientific performance.

Measuring social capital and studying how it is associated with performance-based

outcomes can be considered an important research topic in the network analysis

of social systems, and more generally in computational social science. In this

case, given a non-topological node attribute, it is assumed that its values are

available for all nodes in the network. However, in many real-world data, for a

non-topological node attribute, some nodes (even a large portion of nodes) may

lack its values such that social capital measures using both network structure

and non-topological node attributes (e.g., my proposed intra- and inter-brokerage

measures) cannot be applied directly. Thus, for such a non-topological node

attribute, it is important that these missing values can be predicted, which is a

classification task in machine learning. While there are many paradigms (tools

and techniques) of machine learning, deep learning plays one of the prominent

roles at present, and indeed it will be the main focus of the second part of my

thesis.
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1.2 Part II: Deep learning

Deep learning can be viewed as part of a broader family of machine learning

methods for discovering the representations and structures of the input data or

signals needed for performing feature detection, classification tasks, or regression

tasks. More specifically, deep learning is a collection of machine learning algorithms

for modelling high-level abstractions in data through the use of model architectures,

which are composed of multiple non-linear transformations (LeCun et al., 2015).

Typically, deep learning has been successfully used to process various signals, such

as speech, images, and videos, characterised by an underlying low-dimensional

Euclidean structure.

The adoption of deep learning in the fields of network science and computational

social science has been lagging behind until very recently, primarily because the

non-Euclidean nature of the graph-structured data does not enable a straightfor-

ward definition of basic operations such as convolutions. Geometric deep learning

(GDL), mainly realised by Graph Neural Networks (GNNs), refers to a fairly

broad set of emerging techniques attempting to generalise deep neural models

to graphs (Bronstein et al., 2017), thus extending notions from deep learning

techniques to graph-structured data. Understanding and applying such advanced

deep neural models interacted with graphs have been becoming very popular

in both the machine learning community and other scientific communities since

2017, around the time I started my PhD. As many real-world problems and

applications in the social sciences can be framed from a network perspective, GDL

can provide promising techniques and tools to learn useful vector representations
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of nodes and facilitate the prediction tasks in the network analysis of social

systems. GNN has witnessed success in a variety of research domains including

computer vision (Landrieu and Simonovsky, 2018; Xu et al., 2017), natural lan-

guage processing (Hamilton et al., 2017; Kipf and Welling, 2017; Peach et al., 2020;

Veličković et al., 2018), traffic (Li et al., 2018b; Yu et al., 2018), recommendation

systems (Monti et al., 2017; Ying et al., 2018), chemistry (Duvenaud et al., 2015;

Gainza et al., 2020) and many other areas (Allamanis et al., 2018; Choi et al.,

2017, 2018; Li et al., 2018c; Qiu et al., 2018; Zügner et al., 2018). For an in-depth

review of GNNs, see Ref. (Wu et al., 2020).

1.2.1 Quantifying the alignment of graph and features

In this part of my thesis, I shall present two projects in the area of GDL. The work

outlined in Chapter 6 is concerned with the conceptual understanding of Graph

Convolutional Networks (GCNs) (Kipf and Welling, 2017), a prominent GNN

architecture1. GCN has been introduced to extend the notion of convolution to

graph-structured data by leveraging and combining the structural information of

a graph and the features of the nodes. GCN has been shown to perform extremely

well on node classification tasks on well-known benchmarks in a semi-supervised

learning setting. In this setting, GCN integrates three sources of information: the

features of the nodes, the structure of relationships between the nodes (i.e., the

graph), and the ground truth labels of nodes. GCN uses a subset (i.e., training

set) of the labels, the full features, and the full graph to train a model, which

is then used to predict the labels of the rest of the nodes (i.e., test set). A toy
1The GCN (Kipf and Welling, 2017) paper has been cited more than 9, 000 times until 16

July 2021.
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example of using GCN to predict topics of papers in a citation network is shown

in Figure 1.2. In this example, nodes are scientific papers. Each node is associated

with a high-dimensional feature vector extracted from its semantic content. Nodes

are connected if one paper cites another and the directions of the links are ignored.

Each node is associated with a label representing its scientific topic.

GCN

?

?
?

?

?

? ?

Citation network 

Predicting topics 
of papers

Figure 1.2: A toy example of using GCN to predict topics (colours of nodes) of
papers (nodes) where papers are connected by citation links and each node is also
associated with a feature vector representing its semantic content.

The implied assumption has been that the additional information provided by

the graph will inevitably lead to improved classification accuracy compared with

traditional graph-less classification methods. By contrast, my work shows and

quantifies how, for GCN to perform successfully, there needs to be a degree of

alignment among the three ingredients (features, graph, and ground truth) in

the data set. In fact, in some cases, it might be beneficial to ignore the graph

structure and use a simple graph-less approach such as the multilayer perceptron

(MLP).

To characterise this phenomenon, I perform systematic randomisations of the

graph structure and/or of the features that gradually erode the structure of the

data set, and I show how to elucidate the relationship among, and the relative
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importance of, the three ingredients of GCN. My results thus shed light on what

makes GCN perform better than simpler, limiting cases such as MLP, mean-field

approaches, or ignoring the features. With this aim in mind, a key novelty of

my study lies in the introduction of a subspace alignment measure, with spectral

and geometric interpretations. I use the measure to assess the link between the

alignment of the three ingredients and the classification performance of GCN

and to quantify the alignment among graph, features, and ground truth that is

needed for GCN to perform well. This also relates to the bias-variance trade-

off in supervised machine learning algorithms. The higher alignment between

ingredients corresponds to lower bias and higher variance, whereas the lower

alignment between ingredients corresponds to higher bias and lower variance.

1.2.2 Geometric graphs from data to aid classification

The second project in Part II is presented in Chapter 7 where I show how GCN

can be leveraged when dealing with data that have no explicit graph structure.

Indeed, in a variety of empirical domains, the graph information is not readily

available from the data sets. Here I show that, even in the typical case where

only the sample features are available, it is still possible to extract a geometric

graph from the feature vectors to encapsulate the closeness (i.e., the similarity)

between samples and use this feature-derived graph within a GCN to improve

the classification. Intuitively, the geometric graph acts as a conduit ensuring that

class labels are predominantly shared between similar samples during learning.

To examine the improvement in classification performance induced by feature-

derived graphs, I perform extensive computations on seven data sets from various
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disciplines using four well-known geometric graph construction methods. For

each method and data set, I obtain geometric graphs of increasing edge density,

and I show that there is a “sweet spot” in the density (neither over-sparse nor

over-dense) where the GCN classification performance is maximised. My results

show that classification aided by geometric graphs of appropriate density perform

substantially better than classic graph-less classifiers (e.g., MLP) across my

seven data sets. To gain further insight into the role played by the feature-derived

geometric graphs, I quantify their effect using two measures. I show that geometric

graphs with appropriate edge density both induce a subspace alignment of features

and class membership vectors, as well as enhancing class separability.

Finally, I address the issue of how to make the graphs more efficient. Based on the

well-known importance of spectral properties for graph partitioning (Lambiotte

et al., 2014), I depart from purely geometric graphs and demonstrate that spectral

sparsification of the selected feature-derived geometric graphs can improve further

their classification performance while reducing the number of edges. Hence these

efficient sparsified graphs combine a relatively sparse geometric graph that captures

the local neighbourhood in turn sharpened by the global properties encapsulated

in the Laplacian graph spectrum.

1.3 The structure of the thesis

As introduced above, my thesis can be articulated into two main building blocks:

social capital and deep learning. I illustrate the structure of my thesis in Figure 1.3.

In Part I, I will first introduce the background concerned with social capital in
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Chapter 1. Introduction

Chapter 3. Intra- and inter-brokerage in 
social networks 

Chapter 4. Network foundations of 
scientific impact and innovation of cities 

Chapter 6. Quantifying the alignment of 
graph and features in deep learning

Chapter 7. Geometric graphs from data 
to aid classification tasks

Chapter 8. Conclusion

Part Ⅰ: Social capital

Part Ⅱ: Deep learning

Chapter 2. Background of social capital Chapter 5. Background of deep learning 

Figure 1.3: The structure of the thesis.

Chapter 2, and then present two projects related to social capital in Chapters 3

and 4, respectively. In Part II, I will first introduce the background concerned

with deep learning in Chapter 5, and then present two projects related to deep

learning in Chapters 6 and 7, respectively. Finally, in Chapter 8, I will provide

a summary of the main findings, discuss the contributions to the literature, and

describe the agenda of my future research. Notice that notations in Part I and

Part II are independent, and readers are cautioned not to confuse them.



Part I: Social capital



Chapter 2

Background

2.1 Structural foundations of social capital

The concept of social capital has long been a topic of debate across the social

sciences. In general, the term “social capital” refers to the benefits that actors can

derive from their relationships in families, communities, and other social networks.

Although social capital has various definitions and there is currently no consensus

on a specific one, it has been suggested that social capital might be seen as the

“social glue” that brings people together and gives them a sense of belonging to

this fast-growing and uncertain world (Catts and Ozga, 2005).

As Lin argued, the premise that seems to support most of the views of social

capital is that investments in social relations can produce expected returns in

the market, including the community, economic, financial, political, and labour

markets (Lin, 2002). Social capital can have two different characteristics: it

“inheres in the structure of relations between actors and among actors”, and “like



2.1. Structural foundations of social capital 15

other forms of capital, [it] is productive, making possible the achievement of

certain ends that in its absence would not be possible” (Coleman, 1988).

Scholars agree on the salience of social structure for social capital, and in particular,

they converge on the idea that individuals and organisations can gain information

from their underlying networks (Kwon and Adler, 2014). However, what kind of

social structure matters as a source of social capital is still a topic of debate and

is controversy across the social sciences (Aral and Van Alstyne, 2011; Baum et al.,

2012; Burt, 2005; Gargiulo and Benassi, 2000; Lin, 2002; Reagans and McEvily,

2003). In particular, over the past few years, two (apparently) opposite types of

social structures have been proposed as possible sources of social capital: “closed”

and “open” structures. Arguments in favour of both structures originate concep-

tually from Simmel’s seminal theoretical contributions about the expansion of a

dyadic relationship into a three-party relationship and the sociological significance

of the third element (Simmel, 1950). Two functional roles have been suggested by

Simmel which the third party can play in the triad: the mediator with the tertius

iungens (or “the third who joins”) orientation (Obstfeld, 2005) and the broker

with the tertius gaudens (or “the third who enjoys”) orientation (Burt, 2009). A

toy example on the open and closed structures is shown in Figure 2.1.

1

Closed Open

Figure 2.1: An illustration of closed (left) and open (right) structures in a triplet.
The focal node is surrounded by a dashed line.
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2.2 Closed structures

Advocates of the advantages of closed structures usually build their theory on

Simmel’s tertius iungens logic (Simmel, 1950) and Coleman’s conception of social

capital based on social cohesion (Coleman, 1988; Gamst, 1991). In particular,

scholars have drawn upon the hypothesis that two separated actors sharing one

common acquaintance are more likely to be connected than those without any

common acquaintance (Davis, 1970; Davis et al., 1971; Holland and Leinhardt,

1971, 1977; Luce and Perry, 1949; Watts, 1999).

Generally, a closed structure refers to a densely connected network, rich in third-

party relationships. It has been suggested that closed structures can induce

trust (Burt and Knez, 1995; Gamst, 1991; Reagans and McEvily, 2003; Uzzi, 1997)

and a sense of belonging (Coleman, 1988), maintain cooperative behaviour (Cole-

man, 1988; Ingram and Roberts, 2000) and social norms (Coleman, 1988; Gargiulo

et al., 2009; Granovetter, 2005), and promote the creation of a common cul-

ture (Nahapiet and Ghoshal, 1998). Densely connected networks may also be

related to clustering analysis, where the goal is to group samples such that samples

in the same group are more similar (in some sense) to each other than to those in

other groups (clusters). More specifically, given a network structure, the clustering

analysis of nodes is commonly referred to as community detection.

Despite the benefits that closed structures can bring, actors in densely connected

networks can also potentially bear a two-fold cost: local redundancy and social

pressure. On the one hand, actors whose contacts are connected with each other

are less likely to have access to diverse knowledge and resources than actors
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embedded in sparse networks (Granovetter, 1977). On the other hand, a cohesive

structure can have a negative impact on actors because it can cause social pressure

and induce actors to adopt similar beliefs and reach a unanimous consensus. As a

result, it is likely that densely connected networks can promote the maintenance

of the status quo instead of exploring new and diverging avenues (Fleming et al.,

2007; Sosa, 2011).

2.3 Open structures

As both types of costs (i.e., local redundancy and social pressure) exist in cohesive

structures, scholars have proposed an alternative conception of social capital

associated with the benefits that actors can extract from participating in open

structures. Generally, open structures refer to sparse networks rich in structural

holes and brokerage opportunities (Burt, 2005, 2009, 2010; Lingo and O’Mahony,

2010; Stovel and Shaw, 2012). This conception is based on Simmel’s description of

the role of tertius gaudens (Simmel, 1950) in a triad, which is the role of the broker

between otherwise disconnected others who intends to create and strengthen

discontinuities in the social structure.

Open structures are believed to yield information advantages in the form of access

to diverse views and information (Burt, 2004). Burt has thoroughly explored the

idea that social capital can originate from brokerage opportunities related to open

structures. The concept of “structural hole” is defined by Burt as a “separation

between non-redundant contacts”, “a relationship of non-redundancy between

two contacts”, “a buffer” that makes the two contacts “provide network benefits
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that are in some degree additive rather than overlapping” (Burt, 2009). Burt has

suggested two sources of social capital related to structural holes: information

benefits and control benefits. On the one hand, an actor embedded in an open

structure rich in structural holes can combine different ideas and perspectives

from neighbours who have weak connections with each other, and thus can come

up with innovative ideas (Burt, 2004; Fleming et al., 2007; Sosa, 2011). On the

other hand, control benefits are associated with the third party’s ability to achieve

an advantage by negotiating relationships with disconnected neighbours. An actor

standing near a structural hole can control and transfer valuable information from

one group to another, and ultimately combine various sources of information into

new knowledge (Burt, 2009).

2.4 Empirical results

Since my work on social capital is concerned with open structures, here I shall

review recent empirical results about applying the concept of brokerage in various

scientific communities, including sociology, the economics of innovation, and

research policy.

Ref. (Reagans and McEvily, 2003) examines the relationship between social

cohesion and knowledge transfer using data from a contract R&D firm. Results

suggest that higher brokerage of an individual is negatively associated with the

willingness and motivation of individuals to invest time, energy, and effort in

sharing knowledge with others. Ref. (Batjargal, 2007) studies the interaction

effects of brokerage and experience of entrepreneurs on the performance of Internet
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ventures. The study is based on longitudinal surveys of 94 Internet ventures in

Beijing, China. This study shows that the interaction of brokerage and the

Western experience of entrepreneurs is positively related to the survival likelihood

of Internet firms. In contrast, the interaction of brokerage and startup experience

of entrepreneurs is negatively associated with firm performance. Ref. (Lu and

McInerney, 2016) examines the cultural contingency of network structures in

the contemporary Chinese academic labour market. Empirical results show that

networks affording structural holes are only helpful for returnee’s first promotion,

whereas domestically trained PhDs benefit from network closure for obtaining

their first promotion and subsequent promotions for all PhDs. Ref. (Guan and Liu,

2016) explores the association between brokerage and organisational innovations

in terms of exploitation and exploration in the nano-energy field among 919

innovative organisations located in North America, Europe and Asia and 5107

observations during 2000–2013. This study argues that brokerage in a knowledge

network hinders exploitative innovation but favours exploratory innovation. By

contrast, brokerage in a collaboration network favours exploitative innovation but

has a non-significant effect on exploratory innovation. Ref. (Guan et al., 2016)

investigates the influence of collaboration network structure on national research

and development efficiency on the country level. Results suggest that higher

brokerage correlates positively with better future efficiency. Ref. (Liang and Liu,

2018) studies the evolution of government-sponsored collaboration and its impact

on innovation in the Chinese solar photovoltaics sector. Results identify a positive

relationship between brokerage and innovation performance, suggesting that an

organisation should be embedded in open collaboration networks to increase
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its innovation performance. More recently, Ref. (Hur and Oh, 2021) studied

the relationship between structural holes in the network of backward citations

and future patent value using the United States pharmaceutical patent data.

Specifically, this study shows that patents with less cohesive backward citation

networks are likely to have higher private patent value and higher technological

impact. In addition to extensive applications in sociology and economics, authors

of Ref. (Hristova et al., 2016) have recently extended the concept of brokerage

to the domain of geography. Specifically, they propose that a place that brokers

between otherwise disconnected individuals in physical space can enjoy higher

brokerage potential with respect to the social network of its residents and contacts

outside the place. This concept can be naturally adapted to my context. In this

case, the brokerage of a city can be expressed as its ability to connect otherwise

disconnected scientists.



Chapter 3

Intra- and inter-brokerage in

social networks

3.1 Introduction

To quantitatively measure and compare these two concepts of sources of social

capital, i.e., closed and open structured introduces in Chapter 2, scholars have

proposed two different measures: the local clustering coefficient (Watts, 1999;

Watts and Strogatz, 1998) for closed structures, and the network effective size (Burt,

2009) for open structures. The local clustering coefficient quantifies the degree

to which an ego node’s alters tend to be connected with each other. In contrast,

network effective size focuses on the absence of ties between alters of an ego node. If

two alters are connected, it is believed that there is a certain portion of redundancy

between them. Network effective size thus quantifies the non-redundant portion

of the ego node’s alters. The mathematical formalisations of local clustering
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coefficient and network effective size will be described in Section 3.2. It has

been shown that these two measures have a simple mathematical relationship

between them in undirected and unweighted networks (Latora et al., 2013). This

relationship will be covered in Section 3.4. Although these two measures have

been widely used in sociology to quantify closed and open structures, it has been

argued that simply considering only the network structure while ignoring the non-

network attributes of the actor does not provide a comprehensive perspective on

the structural foundations of social capital (Aral and Van Alstyne, 2011; Fleming

et al., 2007; Schilling and Fang, 2014; Shipilov and Li, 2008; Ter Wal et al., 2016;

Uzzi, 1996).

Indeed so far little attention has been paid to proposing a new measure for quan-

tifying open structures explicitly as a function of the non-topological attributes of

the interacting nodes. To address this shortcoming, here I propose a formalisation

of two new measures of brokerage – intra- and inter-brokerage – that can be seen

as extensions of the formalisation of network effective size originally proposed by

Burt for directed and weighted networks (Burt, 2004). Based on a certain non-

topological attribute (described by a categorical variable, e.g., gender) A of nodes,

I define the intra-brokerage of node i as the non-redundant portion of i’s alters in

i’s ego-centred network that have the same attribute A as i. The inter-brokerage

of node i, on the other hand, is here defined as the non-redundant portion of i’s

alters that are not characterised by the same attribute A as i. As a real-world

example, I use a scientific collaboration network where nodes are scholars and two

scholars are connected if they have co-authored at least one paper. If I consider

gender as an attribute for each scholar, gender-based intra-brokerage of scholar
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i will quantify non-redundant information one can receive from i’s neighbours

belonging to the same gender as i. In contrast, gender-based inter-brokerage can

measure non-redundant information one can receive from i’s neighbours with a

different gender from i. Similarly, if the discipline is considered as a node attribute

in a scientific collaboration network, discipline-based intra-brokerage of scholar i

measures the brokerage opportunities one can obtain from other scholars within

the same discipline. In contrast, discipline-based inter-brokerage quantifies the

degree to which i can broker others from distinct disciplines. I will argue that

defining such measures directly as a function of certain attributes of the actors

will provide finer-grained perspectives on social capital.

The remainder of this chapter is organised as follows. In Section 3.2, I first

review related concepts and formalisations regarding structural foundations of

social capital. In Section 3.3, I introduce the node-level attribute-based brokerage

measures, i.e., intra- and inter-brokerage, in directed and weighted networks. I

then propose the simplified versions of intra- and inter-brokerage measures, and

derive the relationship between these two measures and the intra- and inter-local

clustering coefficient in undirected and unweighted networks in Section 3.4. In

Section 3.5, I apply the new proposed intra- and inter-brokerage measures to

a co-authorship network and compare them with standard brokerage measures

introduced by Burt. Section 3.6 provides a discussion of my study. Finally,

Section 3.7 summarises the contributions of my work to the literature.
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3.2 Measuring social cohesion and structural

holes

As social cohesion and structural holes represent two distinct sources of social

capital, scholars have developed specific measures for properly detecting them: the

local clustering coefficient and the effective size of a focal node’s local (ego-centred)

network, respectively. While the local clustering coefficient measures the extent

to which a node is embedded in a closed cohesive structure, effective size uncovers

the non-redundancy of a node’s contacts, and thus can be used as an indicator of

structural holes. In the rest of this section, I shall briefly review the formalisation

of the local clustering coefficient and effective size.

Local clustering coefficient

Let me consider an unweighted and undirected network G = (V, L) with a set of

vertices V and a set of edges L, and let me focus on one of the nodes, node i. In

order to measure the local cohesion of node i’s ego-centred network, let me define

N(i) as the set of first neighbours of a node i and ki as the number of nodes in

N(i). Formally, the local clustering coefficient of node i can be defined as (Watts,

1999; Watts and Strogatz, 1998):

Ci = li
ki(ki − 1)/2 (3.1)

where li represents the number of edges among i’s neighbours. The local clustering

coefficient of a node i is thus expressed as the ratio between the actual number
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of edges (i.e., li) and the maximum possible number of edges (i.e., ki(ki − 1)/2)

between the nodes in i’s ego-centred network. From another perspective, li can

also be seen as the number of triangles in i’s ego-centred network, and ki(ki − 1)/2

is equal to the maximum possible number of triangles centred on i. As a result,

the local clustering coefficient represents the proportion of open triads centred on

i that are closed into triangles, such that this measure is normalised between 0

and 1. On the one hand, Ci takes the minimum value of 0 in the case where there

is no edge between any pair of i’s neighbours. On the other hand, Ci takes the

maximum value of 1 when all the neighbours of i are connected to each other, i.e.,

when the network formed by nodes in N(i) is a complete graph.

Effective size

Effective size plays a key role among the various measures that Burt proposed to

quantify the presence of structural holes and brokerage opportunities (Burt, 2009;

Latora et al., 2013). The original formalisation of effective size was suggested by

Burt based on the most general case of directed and weighted networks. Let me

denote a directed and weighted network as G = (V, L, W ) where the corresponding

weight associated with an edge (i, j) is represented by wij . The formula that Burt

suggested for the effective size Si of node i is defined as follows:

Si =
∑

j∈N(i)

[
1 −

∑
q∈N(i)

piqmjq

]
, i ̸= j ̸= q (3.2)

where j and q are two distinct nodes in N(i). The term∑
q∈N(i) piqmjq evaluates the

extent to which j is redundant with respect to i’s other neighbours. piq represents
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the proportion of i’s network time and energy invested in the relationship with q,

and mjq is the marginal strength of j’s relation with q. Formally, piq and mjq are

defined as follows:

piq = wiq + wqi∑
t∈N(i)

(wit + wti)
, i ̸= q, i ̸= t (3.3a)

mjq = wjq + wqj

max
r∈N(j)

(wjr + wrj)
, j ̸= q, j ̸= r (3.3b)

where maxr∈N(j)(wjr + wrj) is the largest of j’s relations with any node in N(j).

Since ∑q∈N(i) piqmjq represents the redundancy of j with respect to the other

neighbours, 1 −∑
q∈N(i) piqmjq will refer to non-redundancy of node j. It can be

noticed that the effective size is given by adding the non-redundancy of each node

in i’s ego-centred network. As a result, effective size is a measure which can detect

the presence of structural holes and brokerage opportunities. The effective size

of node i defined in Equation (3.2) varies from 1 to ki, where ki is the degree of

node i. The ratio between effective size and ki is called “efficiency”, denoted as

Ei, and ranges from 0 to 1 (and as such it can be seen as a normalised version of

effective size).
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3.3 Directed and weighted networks

3.3.1 Intra-brokerage

Let me consider a directed and weighted network G(V, L, W ) where the weight

associated with an edge (i, j) is represented by wij . Table 3.1 reports the definitions

of the variables that will serve as the ingredients for the intra-brokerage measure.

Table 3.1: Variables used to formalise the intra-brokerage measure

Symbol Note

A Attribute of a node
N(i) The set of first neighbours of a node i

N(i, A) A subset of N(i) such that the attribute A of each node in N(i, A)
is the same as of node i

kA
i Number of elements in N(i, A), i.e., |N(i, A)|

D(i, Ā, j) A subset of N(i) such that: (i) each node in D(i, Ā, j) is connected
with at least two nodes in N(i, A) one of which is node j; and (ii)
all nodes in D(i, Ā, j) do not share attribute A with node i

D(i, Ā) ⋃
j∈N(i,A) D(i, Ā, j)

dĀ
i Number of elements in D(i, Ā), i.e., |D(i, Ā)|

Figure 3.1 illustrates an example of a simple network and the corresponding values

for the variables in Table 3.2.

Table 3.2: Ingredients of intra-brokerage for the network in Figure 3.1

Variable Example

A Colour of a node
N(1) {2, 3, 4, 5, 6, 7, 8, 9}

N(1, A) {3, 4, 5, 6, 8}
kA

1 5
D(1, Ā, j) D(1, Ā, 3) = {}, D(1, Ā, 4) = {9}, D(1, Ā, 5) = {7, 9}, D(1, Ā, 6) =

{7}, D(1, Ā, 8) = {}
D(1, Ā) {7, 9}

dĀ
1 2

Based on the above variables and notations and on Burt’s original formula for

effective size, intra-brokerage Sintra
i can be defined as:
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Figure 3.1: An example of intra-brokerage: Node 1 (ego) is circled by a dashed
line, and the colour of each node represents the corresponding attribute. All edges
are bidirectional in this example.

Sintra
i =

∑
j∈N(i,A)

[
1 −

∑
q∈N(i,A)∪D(i,Ā,j)

pintra
iq mintra

jq

]
, i ̸= j ̸= q (3.4)

where pintra
iq and mintra

jq are defined as follows:

pintra
iq = wiq + wqi∑

t∈N(i,A)∪D(i,Ā)
(wit + wti)

, i ̸= q, i ̸= t (3.5a)

mintra
jq = wjq + wqj

max
r∈N(j)

(wjr + wrj)
. j ̸= q, j ̸= r (3.5b)

The nodes in D(i, Ā) are alters in i’s ego-centred network that do not share

attribute A with node i but connect with at least two nodes in N(i, A). By
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including D(i, Ā) in the redundancy part in Equation (3.4), the existence of such

nodes in D(i, Ā) will reduce the intra-brokerage opportunities of node i.

In Equation (3.4), 1 −
∑

q∈N(i,A)∪D(i,Ā,j)
pintra

iq mintra
jq quantifies the non-redundant

portion that i can receive from j. The final intra-brokerage of i is defined as the

sum of the aforementioned non-redundant portion over all the neighbours j with

the same class as i in terms of node attribute A.

Notice that the maximum value of Sintra
i is kA

i . The ratio between Sintra
i and kA

i is

called “normalised intra-brokerage”, denoted as Eintra
i , which ranges from 0 to 1.

3.3.2 Inter-brokerage

The formalisation of inter-brokerage mirrors closely the one for intra-brokerage. I

will, therefore, show the proposed inter-brokerage measures without outlining the

various steps in detail.

Table 3.3 reports the definitions of the variables that will be used to formalise

inter-brokerage.

Table 3.3: Variables used to formalise the inter-brokerage measure

Symbol Note

A Attribute of a node
N(i) The set of first neighbours of node i

N(i, Ā) A subset of N(i) such that each node in N(i, Ā) does not share
attribute A with node i

kĀ
i Number of elements in N(i, Ā), i.e., |N(i, Ā)|

D(i, A, j) A subset of N(i) such that each node in D(i, A, j): (i) is connected
with at least two nodes in N(i, Ā) one of which is node j; and (ii)
all nodes in D(i, A, j) share attribute A with node i

D(i, A) ⋃
j∈N(i,Ā) D(i, A, j)

dA
i Number of elements in D(i, A), i.e., |D(i, A)|
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Figure 3.2 illustrates an example of a simple network and the corresponding values

for the variables in Table 3.4.

1

3 4 5 6

810

2 7

9

Figure 3.2: An example for inter-brokerage: Node 1 (ego) is circled by a dashed
line, and the colour of each node represents the corresponding attribute. All edges
are bidirectional in this example.

Table 3.4: Ingredients of inter-brokerage for the network in Figure 3.2

Variable Example

A Colour of a node
N(1) {2, 3, 4, 5, 6, 7, 8, 9}

N(1, Ā) {3, 4, 5, 6, 8}
kĀ

1 5
D(1, A, j) D(1, A, 3) = {}, D(1, A, 4) = {9}, D(1, A, 5) = {7, 9}, D(1, A, 6) =

{7}, D(1, A, 8) = {}
D(1, A) {7, 9}

dA
1 2

Inter-brokerage Sinter
i of node i within a directed and weighted network can now

be defined as:
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Sinter
i =

∑
j∈N(i,Ā)

[
1 −

∑
q∈N(i,Ā)∪D(i,A,j)

pinter
iq minter

jq

]
, i ̸= j ̸= q (3.6)

where pinter
iq and minter

jq are defined as:

pinter
iq = wiq + wqi∑

t∈N(i,Ā)∪D(i,A)
(wit + wti)

, i ̸= q, i ̸= t (3.7a)

minter
jq = wjq + wqj

max
r∈N(j)

(wjr + wrj)
. j ̸= q, j ̸= r (3.7b)

The nodes in D(i, A) are alters in i’s ego-centred network that share attribute A

with node i but connect with at least two nodes in N(i, Ā). By including D(i, A)

in the redundancy part in Equation (3.6), the existence of such nodes in D(i, A)

will reduce the inter-brokerage opportunities of node i.

In Equation (3.6), 1 −
∑

q∈N(i,Ā)∪D(i,A,j)
pinter

iq minter
jq quantifies the non-redundant

portion that i can receive from j. The final inter-brokerage of i is defined as

the sum of the aforementioned non-redundant portion over all the neighbours j

belonging to a different class from i in terms of node attribute A.

Notice that the maximum value of Sinter
i is kĀ

i . The ratio between Sinter
i and kĀ

i is

called “normalised inter-brokerage”, denoted as Einter
i , which ranges from 0 to 1.
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3.4 Simplified versions in undirected and un-

weighted networks

3.4.1 Intra-brokerage and the intra-local clustering coeffi-

cient

For an undirected and unweighted network, pintra
iq and mintra

jq can be simplified as:

pintra
iq = 1

kA
i + dĀ

i

, i ̸= q (3.8a)

mintra
jq = ajq, j ̸= q (3.8b)

where ajq = 1 if node j is connected with node q, and ajq = 0 otherwise. Therefore,

intra-brokerage Sintra
i as defined in Equation (3.4) can be simplified as:

Sintra
i =

∑
j∈N(i,A)

[
1 −

∑
q∈N(i,A)∪D(i,Ā,j)

pintra
iq mintra

jq

]

=
∑

j∈N(i,A)
1 −

∑
j∈N(i,A)

∑
q∈N(i,A)∪D(i,Ā,j)

pintra
iq mintra

jq

= kA
i −

∑
j∈N(i,A)

∑
q∈N(i,A)∪D(i,Ā,j)

ajq

kA
i + dĀ

i

= kA
i − 1

kA
i + dĀ

i

∑
j∈N(i,A)

∑
q∈N(i,A)∪D(i,Ā,j)

ajq. (3.9)

In this case, where the network is undirected and unweighted, the intra-local
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clustering coefficient Cintra
i can be defined as:

Cintra
i =

∑
j∈N(i,A)

∑
q∈N(i,A)∪D(i,Ā,j)

ajq

kA
i (kA

i − 1) + kA
i dĀ

i

, if kA
i ≥ 2. (3.10)

where the numerator equals the sum of (i) two times of the number of edges

between two nodes in N(i, A); and (ii) the number of edges between two nodes

where one is in N(i, A) and the other is in D(i, Ā). These are two types of

redundancy considered in the definition of intra-brokerage in Equation (3.9). If

intra-brokerage and intra-local clustering coefficient are considered as two related

and opposing measures, the links contributing to the redundancy in intra-brokerage

should become the numerator in the definition of intra-local clustering coefficient.

The denominator corresponds to the maximum possible value associated with two

types of edges in the numerator. In other words, intra-local clustering coefficient

takes the maximum value when all nodes in N(i, A) are connected and nodes

between N(i, A) and D(i, Ā) are also all connected.

A simple relation between intra-brokerage and the intra-local clustering

coefficient

In what follows, I develop the formal relationship between Sintra
i and Cintra

i for

undirected and unweighted networks. Based on Equations (3.9) and (3.10), I
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obtain:

(kA
i − Sintra

i )(kA
i + dĀ

i ) = kA
i (kA

i + dĀ
i − 1)Cintra

i

kA
i − Sintra

i = kA
i (kA

i + dĀ
i − 1)

kA
i + dĀ

i

Cintra
i

Sintra
i = kA

i − kA
i (kA

i + dĀ
i − 1)

kA
i + dĀ

i

Cintra
i

Sintra
i = kA

i − kA
i (kA

i + dĀ
i − 1)

(kA
i + dĀ

i )(kA
i − 1)

(kA
i − 1)Cintra

i . (3.11)

Equation (3.11) shows the relationship between intra-brokerage and the intra-local

clustering coefficient for undirected and unweighted networks. This relationship

is similar to Equation (3.12), which has been suggested for effective size and the

local clustering coefficient in Ref. (Latora et al., 2013).

Si = ki − (ki − 1)Ci. (3.12)

Notice that, in addition to Equation (3.12), Equation (3.11) contains one more

coefficient, namely kA
i (kA

i +dĀ
i −1)

(kA
i +dĀ

i )(kA
i −1)

, which I will denote as αA
i . Moreover, kA

i in

Equation (3.11) is equivalent to ki in Equation (3.12). Using αA
i and kA

i , I can

now simplify Equation (3.11) as:

Sintra
i = kA

i − αA
i (kA

i − 1)Cintra
i . (3.13)

In the case, where dĀ
i = 0, Sintra

i in Equation (3.13) can be further simplified as:

Sintra
i = kA

i − (kA
i − 1)Cintra

i . (3.14)
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In the case where dĀ
i ≥ 1 and kA

i ≥ 2, αA
i is positive and larger than 1.

Bounds of intra-brokerage and the intra-local clustering coefficient

Based on the formalisations above, I will now examine the bounds of intra-

brokerage and the intra-local clustering coefficient. According to Equation (3.9),

the minimum value of Sintra
i corresponds to the case where each ajq is equal to 1,

and the maximum value of Sintra
i corresponds to the case where each ajq is equal

to 0:

min(Sintra
i ) = kA

i − 1
kA

i + dĀ
i

∑
j∈N(i,A)

∑
q∈N(i,A)∪D(i,Ā,j)

1

= kA
i − kA

i (kA
i − 1 + dĀ

i )
kA

i + dĀ
i

= kA
i (kA

i + dĀ
i ) − kA

i (kA
i − 1 + dĀ

i )
kA

i + dĀ
i

= kA
i

kA
i + dĀ

i

, and

max(Sintra
i ) = kA

i − 1
kA

i + dĀ
i

∑
j∈N(i,A)

∑
q∈N(i,A)∪D(i,Ā,j)

0

= kA
i − 0

= kA
i .

Thus,
kA

i

kA
i + dĀ

i

≤ Sintra
i ≤ kA

i . (3.15)
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According to Equation (3.11), which shows the relationship between intra-brokerage

and the intra-local clustering coefficient, I can obtain the bounds of the intra-local

clustering coefficient as follows:

0 ≤ Cintra
i ≤ 1. (3.16)

3.4.2 Inter-brokerage and the inter-local clustering coeffi-

cient

For an undirected and unweighted network, pinter
iq and minter

jq can be simplified as:

pinter
iq = 1

kĀ
i + dA

i

, i ̸= q (3.17a)

minter
jq = ajq, j ̸= q (3.17b)

where ajq = 1 if node j is connected with node q, and ajq = 0 otherwise. Therefore,

inter-brokerage Sinter
i , as defined in Equation (3.6), can be simplified as:

Sinter
i = kĀ

i − 1
kĀ

i + dA
i

∑
j∈N(i,Ā)

∑
q∈N(i,Ā)∪D(i,A,j)

ajq. (3.18)

In this case, where the network is undirected and unweighted, by mirroring Cintra
i ,

the inter-local clustering coefficient Cinter
i can be defined as:

Cinter
i =

∑
j∈N(i,Ā)

∑
q∈N(i,Ā)∪D(i,A,j)

ajq

kĀ
i (kĀ

i − 1) + kĀ
i dA

i

, if kĀ
i ≥ 2. (3.19)
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A simple relation between inter-brokerage and the inter-local clustering

coefficient

The relationship between Sinter
i and Cinter

i can be summarised as:

Sinter
i = kĀ

i − kĀ
i (kĀ

i + dA
i − 1)

(kĀ
i + dA

i )(kĀ
i − 1)

(kĀ
i − 1)Cinter

i . (3.20)

Again, I can obtain a relationship that is similar to the one between effective

size and the local clustering coefficient suggested in Ref. (Latora et al., 2013).

Notice that, in addition to Equation (3.12), Equation (3.20) contains one more

coefficient, namely kĀ
i (kĀ

i +dA
i −1)

(kĀ
i +dA

i )(kĀ
i −1)

, which I will denote as αĀ
i . Moreover, kĀ

i in

Equation (3.20) is equivalent to ki in Equation (3.12). Using αĀ
i and kĀ

i , I can

now simplify Equation (3.20) as:

Sinter
i = kĀ

i − αĀ
i (kĀ

i − 1)Cinter
i . (3.21)

In the case where dA
i = 0, Sinter

i in Equation (3.21) can be further simplified as:

Sinter
i = kĀ

i − (kĀ
i − 1)Cinter

i . (3.22)

In the case where dA
i ≥ 1 and kĀ

i ≥ 2, αĀ
i is positive and larger than 1.

Bounds of inter-brokerage and the inter-local clustering coefficient

Based on the formalisation of inter-brokerage and the inter-local clustering coeffi-

cient in undirected and unweighted networks, I will now examine the bounds of
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these two measures.

According to Equation (3.18), the minimum value of Sinter
i corresponds to the

case where each ajq is equal to 1, and the maximum value of Sinter
i corresponds to

the case where each ajq is equal to 0:

min(Sinter
i ) = kĀ

i

kĀ
i + dA

i

, and

max(Sinter
i ) = kĀ

i .

Thus,
kĀ

i

kĀ
i + dA

i

≤ Sinter
i ≤ kĀ

i . (3.23)

According to Equation (3.20), which shows the relationship between inter-brokerage

and the inter-local clustering coefficient, I can obtain the bounds of the inter-local

clustering coefficient as follows:

0 ≤ Cinter
i ≤ 1. (3.24)
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3.5 A case study in a co-authorship network

3.5.1 Data set

I extracted the largest connected component from the co-authorship network in

which the nodes are the scholars who published full papers in NeurIPS1 2016,

and two nodes are connected if the corresponding scholars co-authored at least

one accepted paper in NeurIPS 2016. I also assigned weights to edges based on

the number of accepted papers two scholars co-authored in NeurIPS 2016 and

the number of co-authors of each paper, as suggested in Ref. (Newman, 2001b).

Specifically, let me begin by setting δp
i to denote whether scholar i is a co-author

of paper p:

δp
i =


1 if scholar i is a co-author of paper p,

0 otherwise.

Then the weight wij of the edge between scholar i and scholar j is defined as:

wij =
∑

p

δp
i δp

j

np − 1 , (3.25)

where np is the number of co-authors of paper p.

My final NeurIPS co-authorship network contains 75 nodes and 179 edges. I further

collected information about the 75 scholars from their personal academic websites

such that two attributes could be associated with each author. These two attributes

are: (i) the scholar’s gender; and (ii) the country where the scholar’s affiliation

is located. The reasons why gender and country are two important attributes
1NeurIPS (Conference and Workshop on Neural Information Processing Systems) is a flagship

machine learning and computational neuroscience conference held every December.
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are as follows. On the one hand, recently, in the communities of the science of

science and research policy, there is an increasing trend to study the demographic

backgrounds of scholars in which gender is an essential one (Ni et al., 2021).

Within- and across-gender collaboration might provide a scholar with different

kinds of information. On the other hand, within- and across-country collaboration

is a classic topic in the aforementioned two research communities (Wagner and

Leydesdorff, 2005). A scholar might obtain different advantages from these two

types of collaboration ties. Thus, it would be interesting to consider these two

attributes and study the corresponding intra- and inter-brokerage.

Based on the above two node-level (non-topological) attributes, I can define two

types of intra- and inter-brokerage measures: (i) gender-based; and (ii) country-

based. Furthermore, depending on whether I consider the weights of the edges and

whether I normalise the measures, I can evaluate the proposed intra- and inter-

brokerage measures on this co-authorship network in four different cases: (i) the

unweighted and unnormalised case; (ii) the weighted and unnormalised case; (iii)

the unweighted and normalised case; and (iv) the weighted and normalised case.

I also compare the proposed intra- and inter-brokerage measures with standard

brokerage measures, i.e., effective size and efficiency. Section 3.5.2 summarises

the empirical results.

3.5.2 Results

I summarise the notations used for the three sets of brokerage measures in the

first three columns in Table 3.5. Each set contains four distinct measures: (i)

unweighted and unnormalised; (ii) weighted and unnormalised; (iii) unweighted
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Table 3.5: Summary of notations used to formalise brokerage measures.
The weights of the edges of the schematic network are randomly assigned as
follows: (1, 2, 1), (1, 3, 2), (1, 4, 3), (1, 5, 5), (1, 6, 4), (1, 7, 3), (1, 8, 2), (1, 9, 6),
(2, 5, 10), (4, 9, 3), (5, 6, 4), (5, 7, 5), (5, 8, 1), (5, 9, 4), (5, 10, 3), (6, 7, 2), (6, 8, 5),
where the first two numbers refer to the two nodes connected by an edge and the
last number is the weight of the edge. The network is considered to be undirected
and weighted here.

Categories Symbols Notes Toy network Brokerage values of node 1

Standard brokerage (Burt, 2009)

S Unweighted effective size

1

3 4 5 6

810

2 7

9

6.0000
Sw Weighted effective size 6.4103
E Unweighted efficiency 0.7500

Ew Weighted efficiency 0.8013

Intra-brokerage (This chapter)

Sintra Unweighted and unnormalised intra-brokerage 3.5714
Sw,intra Weighted and unnormalised intra-brokerage 4.0440
Eintra Unweighted and normalised intra-brokerage 0.7143

Ew,intra Weighted and normalised intra-brokerage 0.8088

Inter-brokerage (This chapter)

Sinter Unweighted and unnormalised inter-brokerage 2.2500
Sw,inter Weighted and unnormalised inter-brokerage 2.1111
Einter Unweighted and normalised inter-brokerage 0.7500

Ew,inter Weighted and normalised inter-brokerage 0.7037

and normalised; and (iv) weighted and normalised. The first set is concerned with

the more traditional measures of effective size and efficiency (Burt, 2009). The

second and third sets of measures refer to intra- and inter-brokerage, respectively.

In the last two columns of Table 3.5, I also report the brokerage values of node 1

in the schematic network in Figure 3.1.

I provide the code to compute my proposed measures of intra- and inter-brokerage

at https://github.com/haczqyf/brokerage. The data set on the co-authorship

network is also provided in the same Github repository.

Comparison of brokerage measures

First, I compute brokerage in terms of two distinct attributes (i.e., gender and

country). As an example, Figure 3.3 shows a network where the focal attribute

is gender, black nodes represent male scholars and grey nodes represent female

scholars. As NeurIPS is a conference in the scientific field of computer science,

scholars in this co-authorship network are mainly computer scientists. As shown

https://github.com/haczqyf/brokerage
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in the figure, on the one hand, most scholars are male and only a minority are

female. On the other, no two female scholars are directly connected. This results

in a two-fold pattern: (i) in most ego-centred networks, alters tend to be male

scholars; and (ii) female scholars’ ego-centred networks tend to be characterised

by larger inter-brokerage measures than intra-brokerage.

(a) Intra-brokerage (Sw,intra) (b) Inter-brokerage (Sw,inter)

Figure 3.3: Gender-based brokerage. Panels (a)-(b): Visualisation of the collabo-
ration network. The colour of each node refers to its corresponding gender (black:
male; grey: female), and the size of each node is proportional to the corresponding
intra-brokerage (a) and inter-brokerage (b).

Second, for the three sets of brokerage, I calculate the Kendall’s τ rank correlation

coefficient (Kendall, 1938), denoted as τb(X, Y ), which is a measure of the cor-

respondence between two rankings X and Y . The Kendall’s τ coefficient ranges

from −1 to 1, such that values close to 1 indicate strong agreement and values

close to −1 strong disagreement. Specifically, I compute the “τ -b” version of the

Kendall’s τ (Kendall, 1945) for each pair of rankings of nodes in the collaboration

network introduced in Section 3.5.1 based on the brokerage measures summarised

in Table 3.5. The Kendall’s τ coefficients based on each of the two distinct

attributes (i.e., gender and country) are visualised in Figure 3.4.
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(a) Gender-based brokerage (b) Country-based brokerage

Figure 3.4: The matrices of Kendall’s τ coefficients of the brokerage measures.
All correlations are statistically significant with p-values < 0.001.

I will now analyse the Kendall’s τ rank correlation coefficients distinctively for each

of the two different attributes. For each attribute, I can compare standard measures

with each of the four versions of the proposed brokerage measures: unweighted

and unnormalised, weighted and unnormalised, unweighted and normalised, and

weighted and normalised. However, for the sake of clarity, I concentrate only

on the weighted and unnormalised version, as the other three versions can be

analysed in a similar way.

The first attribute I consider is gender, and the corresponding results are shown

in Figure 3.4a. I found that τb(Sw, Sw,intra) = 0.75, τb(Sw, Sw,inter) = 0.43,

and τb(Sw,intra, Sw,inter) = 0.09. This indicates that there is relatively strong

positive association for the pair (Sw, Sw,intra), and a weak positive association

for the pair (Sw, Sw,inter), whereas there is a very weak positive association for

the pair (Sw,intra, Sw,inter). This reflects the fact that the proposed intra- and

inter-brokerage measures can potentially capture distinct information that would

otherwise remain hidden if only the standard brokerage measures were applied.

In the real collaboration network, 5 scholars are female while 70 scholars are male.
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Indeed, the distribution of classes of one attribute might influence the insights.

To address this concern, I have now performed simulation analysis by increasing

the number of females, and each scholar is randomly labelled as either male or

female while keeping the network structure unchanged.

The number of females starts from 5. This number is increased by 5 every time

until it reaches 35. When the number of females is small, gender is unbalanced.

In contrast, when the number of females is 35, gender is almost well balanced. For

each number of females considered, 100 times of random allocations are performed.

Figure 3.5 shows the real network and two simulated networks with different

numbers of females (5 and 35, respectively).

(a)
The real network

# male scholars: 70
# female scholars: 5

Male
Female

(b)
One simulated gender-skewed network

# male scholars: 70
# female scholars: 5

(c)
One simulated gender-balanced network

# male scholars: 40
# female scholars: 35

Figure 3.5: Visualisations of the real network and two simulated networks for the
attribute gender.

For the real network and each simulated network, I also calculated two network-

level measures: (i) gender diversity: it is calculated as the Shannon entropy

(with base 2) of the gender distribution of scholars; and (ii) gender heterophily:

it is calculated as the proportion of links for which two scholars have different

genders. I also calculated the weighted unnormalised standard brokerage (Sw)

and gender-based intra- and inter-brokerage (Sw,intra and Sw,inter). The pairwise

Kendall’s τ correlation coefficients among them are also computed, denoted as
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τb(Sw, Sw,intra), τb(Sw, Sw,intra) and τb(Sw,intra, Sw,inter).

Figure 3.6 shows the relationships between these correlation coefficients and

gender diversity. Results suggest that gender diversity is negatively correlated

with τb(Sw, Sw,intra), whereas it is positively correlated with τb(Sw, Sw,intra) and

τb(Sw,intra, Sw,inter). Notice that the correlations among brokerage measures only

vary within a small range when gender diversity changes. In particular, the

correlation between intra- and inter-brokerage is always low, suggesting that my

insights about intra- and inter-brokerage still hold even when gender is balanced

in the network.

(a) Standard vs. Intra
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(c) Intra vs. Inter
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Figure 3.6: The relationships between correlations among brokerage measures
and gender diversity. The black dots show the means of correlation coefficients
between two brokerage measures in simulated networks. The grey area represents
the 95% confidence interval. The bigger grey empty circle corresponds to the real
network.

I also plotted the relationship between correlation coefficients of brokerage measures

and gender heterophily in Figure 3.7. Results show that gender heterophily is

negatively correlated with τb(Sw, Sw,intra), whereas it is positively correlated with

τb(Sw, Sw,intra) and τb(Sw,intra, Sw,inter). Again, the correlation between intra- and

inter-brokerage is low and only varies within a small range when gender heterophily

changes, suggesting that my insights about intra- and inter-brokerage still hold

even when gender heterophily is higher in the network.
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(c) Intra vs. Inter
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Figure 3.7: The relationships between correlations among brokerage measures
and gender heterophily. The black dots show the means of correlation coefficients
between two brokerage measures in simulated networks. The grey area represents
the 95% confidence interval. The bigger grey empty circle corresponds to the real
network.

The second attribute of my study is country, and the corresponding results are

shown in Figure 3.4b. Here, the country refers to the geographic location of the

institution with which a scholar is affiliated. There are in total three different

countries in the NeurIPS co-authorship network: the United States, Switzerland,

and Canada. I found that τb(Sw, Sw,intra) = 0.88, τb(Sw, Sw,inter) = 0.37, and

τb(Sw,intra, Sw,inter) = 0.21, which again suggests non-overlapping rankings of

nodes based on the different measures.

Among 75 scholars, 47 scholars are from the US, 17 scholars are from Switzerland,

and 11 scholars are from Canada. If one country dominates the network, the

standard brokerage and intra-brokerage tend to highly correlated. This also

corresponds to the findings when the attribute is gender. The real collaboration

network in terms of country is country-unbalanced. I first randomly allocated

each scholar into one of the three countries by keeping the network structure and

country distribution unchanged. 100 simulated networks were performed. Next,

to consider the case where country distribution is balanced across three countries,

I consider the case where the number of scholars from three countries is the same

in the network, i.e., 25 from each country. Then in each simulated network, each
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scholar is assigned to one of the three countries. 100 simulated networks were

performed. Like with gender diversity and gender heterophily, country diversity

and country heterophily (two measures at the network level) are calculated for the

simulated networks. In Figure 3.8, the real network and two simulated networks

are shown in which one is country-unbalanced and the other is country-balanced.

(a)
The real network

# US: 47
# Switzerland: 17
# Canada: 11

US
Switzerland
Canada

(b)
One simulated country-unbalanced network

# US: 47
# Switzerland: 17
# Canada: 11

(c)
One simulated country-balanced network

# US: 25
# Switzerland: 25
# Canada: 25

Figure 3.8: Visualisations of the real network and two simulated networks for the
attribute country.

In Figure 3.9, I show the comparison between simulated country-unbalanced

and country-balanced in terms of country diversity and country heterophily. As

expected, country-balanced simulated networks have higher country diversity and

country heterophily.
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Figure 3.9: Bar plots show the means of The country diversity and country
heterophily in simulated country-unbalanced and country-balanced networks. The
error bar represents the 95% confidence interval. The bigger grey empty circle
corresponds to the real network.
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Like with gender, for each simulated network, I calculated the weighted unnor-

malised standard brokerage (Sw) and country-based intra- and inter-brokerage

(Sw,intra and Sw,inter). The pairwise Kendall’s τ correlation coefficients among

them are also computed. The mean of correlation coefficients of brokerage measures

in country-unbalanced and country-balanced simulated networks are compared

in Figure 3.10. Results suggest that, compared with country-unbalanced net-

works, in country-balanced networks, τb(Sw, Sw,intra) tends to be lower whereas

τb(Sw, Sw,inter) and τb(Sw,intra, Sw,inter) tend to be higher. In particular, even in

country-balanced networks, the correlation between intra- and inter-brokerage is

still low, which suggests that my insights about intra- and inter-brokerage can

capture distinct perspectives of social capital still hold.
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Figure 3.10: The correlations among brokerage measures in country-unbalanced
and country-balanced networks. Bar plots show the means of correlation coef-
ficients between two brokerage measures in simulated networks. The error bar
represents the 95% confidence interval. The bigger grey empty circle corresponds
to the real network.

The social capital of scholars: Brokerage and scientific impact

I further examine the association between my proposed measures and scholars’

scientific impact in the co-authorship network. The scholar’s scientific impact

is measured by the number of citations that the scholar received between 2016

and 2018. I use OLS models with robust standard errors to regress the log of
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the scholar’s citations on the standard and proposed intra- and inter-brokerage

measures, respectively. Here I use weighted and unnormalised versions to exemplify

my analysis. Moreover, covariates in regression models are standardised (with

mean 0 and standard deviation 1) such that coefficients can be compared. Results

are summarised in Table 3.6 and I detail each model below. In all models, gender

and country fixed effects are included in all the models as control variables. In

addition, I also collected the data about scholar’s academic position (including

four categories: student, post-doc, faculty and others) as a control variable in all

the models. The past citations and the rank of the university of scholars are not

available in my data set. However, it can be argued that the academic position

can in general reflect the past citations of scholars.

Model 1 I start with Model 1 containing only standard brokerage proposed by

Burt. As expected, standard brokerage is positively and significantly associated

with the scholar’s scientific impact (r = 0.542, p < 0.001).

Model 2-3 In Model 2, I only include gender-based brokerage measures, and

results suggest that gender-based intra-brokerage is positively and significantly

associated with the scholar’s scientific impact (r = 0.599, p < 0.001) while the

relationship between gender-based inter-brokerage and the scholar’s scientific

impact is not significant (r = −0.257, p > 0.1). Similar to Model 2, in Model 3, I

only include country-based brokerage measures, and results show that country-

based intra-brokerage is positively and significantly associated with the scholar’s

scientific impact (r = 0.346, p < 0.1) and country-based inter-brokerage is also

positively and significantly associated with the scholar’s scientific impact (r =
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0.388, p < 0.01).

Model 4 Model 4 is my final model. I intend to use measures from both gender-

based and country-based brokerage which are statistically significant in Models 2-3.

Since the Pearson correlation coefficient between gender-based and country-based

intra-broker is 0.918 indicating they are highly correlated, they cannot be both

included in the model to avoid multicolinearity issue. In this case, I include

gender-based intra-brokerage, country-based inter-brokerage and their interaction

term. Both gender-based intra-brokerage (r = 0.485, p < 0.1) and country-based

inter-brokerage (r = 0.457, p < 0.05) show positive and significant association

with scholar’s scientific impact, and thus results in Model 4 are consistent with

Models 2-3. In addition, the interaction term of these two measures is also

significant indicating that one brokerage measure can be moderated by the other.

The interaction effect is also visualised in Figure 3.11. I further performed tests

for multicollinearity (Mean VIF = 4.36) with “estat vif” command in Stata,

omitted variables (p = 0.3042) with “estat ovtest, rhs” command in Stata and

heteroskedasticity (p = 0.9996) with “estat imtest, white” in Stata, and results

suggest that Model 4 meets these assumptions of OLS regression. Note that

insignificant p-values imply a model that passes the tests for omitted variables

and heteroskedasticity. I have also plotted scatter plots between residuals and

independent variables. There are no discernible patterns in the plots suggesting

that the model is not violating the zero mean conditional assumption.

I did not include the standard brokerage in my models because it highly correlates

with gender-based and country-based intra-brokerage with Pearson correlation
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coefficients over 0.9. Adding the standard brokerage in the regression models

causes multicollinearity issues. For example, the mean VIF will increase to 28.13

if the standard brokerage is included in Model 4.

Table 3.6: OLS estimates of the association between brokerage and scientific
impact of a scholar.

(1) (2) (3) (4)

ln(citations) ln(citations) ln(citations) ln(citations)

Standard brokerage (Burt) 0.542∗∗∗

(0.144)

Gender-based intra-brokerage 0.599∗∗∗ 0.485+

(0.155) (0.258)

Gender-based inter-brokerage -0.257

(0.318)

Country-based intra-brokerage 0.346+

(0.182)

Country-based inter-brokerage 0.388∗∗ 0.457∗

(0.135) (0.196)

Gender-based intra-brokerage × Country-based inter-brokerage -0.0863+

(0.0496)

Gender Fixed Fixed Fixed Fixed

Country Fixed Fixed Fixed Fixed

Position Fixed Fixed Fixed Fixed

Constant 9.511∗∗∗ 9.438∗∗∗ 9.025∗∗∗ 8.829∗∗∗

(0.626) (0.640) (0.807) (0.898)

Number of samples 75 75 75 75

R2 0.646 0.649 0.659 0.661

Robust standard errors in parentheses

+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure 3.11: Visualisation of interaction effect of Model 4 in Table 3.6. This
plots the scientific impact of a scholar predicted as a function of gender-based
intra-brokerage (standardised) and country-based inter-brokerage (standardised).

3.6 Discussion and conclusion

In this chapter, I addressed the problem that simply considering only the network

structure while ignoring the non-topological attributes of the actor might not

provide a comprehensive perspective on the structural foundations of social capital.

To address this issue, I have proposed intra- and inter-brokerage measures for

quantifying open structures explicitly in terms of the non-topological attributes

of the interacting actors. The relevant formalisations of intra- and inter-brokerage

have been thoroughly developed in directed and weighted networks by closely

following and extending the formalisation of network effective size proposed by

Burt. Besides, in the case of undirected and unweighted networks, simplified

formalisations of intra- and inter-brokerage measures have been suggested, and the

relationship between these two measures and the intra- and inter-local clustering
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coefficients are derived as well.

As a case study, I applied three sets of brokerage measures (standard, intra- and

inter-brokerage) on a co-authorship network, and showed that the intra- and

inter-brokerage measures can capture distinct brokerage information compared

with standard brokerage measures. Thus defining such intra- and inter-brokerage

measures as a function of certain attributes of the actors can provide finer-grained

perspectives on social capital. Moreover, I examined the association between

the proposed measures and nodes’ performance-based outcomes, which further

improves our understanding of social capital and how actors can extract value

from different types of open social structures.

3.6.1 Implications for research

My study offers a deeper perspective on Burt’s brokerage and structural hole

theory. Most studies in the past few years in the community of social network

analysis have leveraged only the network structure to quantify the social capital.

This has inevitably resulted in a number of measures of social capital that do

not reflect the non-topological attributes of the nodes. However, given a fixed

structure, an actor may well benefit from different brokerage opportunities to

achieve better performance depending on the node’s non-topological attributes

(e.g., gender, race, education). My proposed intra- and inter-brokerage measures

aim precisely to shed light on the salience of such non-topological attributes for

social capital, and capture the nuances of an integrated perspective that would

remain otherwise hidden by using the general brokerage measure proposed by

Burt.
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The proposed novel brokerage measures will open new doors to re-examine classic

sociological questions related to the advantages of structural holes. Although

the structural hole theory tells us that an actor in a social network enjoying

higher brokerage opportunities can be better off, it does not provide insights

about whether intra- or inter-brokerage based on a node attribute is needed.

With the new measures proposed in this chapter, future studies can test the

hypotheses related to how intra- and inter-brokerage based on a non-topological

node attribute are associated with different performance-based outcomes in various

social networks.

3.6.2 Implications for practice

As the node attributes in social networks are increasingly available in the era of

big data (Qian et al., 2021b), there are unprecedented opportunities to combine

network structure and non-topological node attributes to quantify the social

capital of actors. Researchers could use the Python package I provided to easily

measure the intra- and inter-brokerage based on a certain attribute of nodes. This

will allow them to incorporate these two complementary perspectives to offer

deeper insights on the role of social capital in the social sciences.

3.6.3 Limitations

In this chapter, I mainly considered a categorical attribute of nodes (e.g., gender)

based on which an alter can naturally be classified as a member of either an

intra-group or an inter-group associated with the focal node. However, many
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real-world attributes are not categorical but continuous (e.g., age). In this case,

the proposed measures cannot be directly applied. However, one could convert

the continuous variable into a discrete version, thus becoming a categorical

variable. By so doing, my proposed measures can then be used with, and extended

to, non-categorical data. It should also be noticed that my OLS regressions

results cannot be interpreted as causal relationships. It would be interesting to

leverage advanced causal inference methods, e.g., instrumental variable, to study

whether the proposed intra- and inter-brokerage measures have causal effects on

performance measures in social networks.

3.7 Contribution to the literature

Here I will summarise the main contributions of this chapter to extant literature

on social capital. I developed a set of new network measures – “intra- and

inter-brokerage” – that combine nodes’ topological and non-topological features

to extract sources of social capital in social networks. The proposed measures

can be widely applied to weighted and directed networks as well as unweighted

and undirected networks. I have addressed the long-debated problem in the

literature that only considering network structure while ignoring non-topological

node features cannot provide a comprehensive understanding of social capital (Aral

and Van Alstyne, 2011; Fleming et al., 2007; Gould and Fernandez, 1989; Schilling

and Fang, 2014; Shipilov and Li, 2008; Ter Wal et al., 2016; Uzzi, 1996). More

specifically, my proposed brokerage measures can overcome this problem by

extracting an actor’s distinct brokerage types or roles, thus helping us gain a
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deeper understanding of the brokerage behaviour in social systems and offering

the potential to study their relationships with an actor’s performance. In addition,

I also provide open-source code in Github that can allow researchers to easily

apply my new measures and will offer opportunities to conduct new empirical

studies on social capital.



Chapter 4

Network foundations of the

scientific performance of cities

4.1 Introduction

Cities have long been regarded as the main engine of social innovation and wealth

creation (Bettencourt et al., 2007a). For instance, Ref. (Li et al., 2017) suggests

that cities worldwide have nowadays accounted for over 50% of the population,

more than 80% of the world’s wealth, and at least 90% of the innovation. As the

main producers of scientific knowledge and innovation, scientists live and work

primarily in cities (Vaccario et al., 2020; Verginer and Riccaboni, 2020a,b). In

modern science, scientists usually do not work alone, but collaborate with others,

which can potentially allow them to access interdisciplinary scientific expertise,

produce more high-impact publications, and pursue new scientific interests (Evans

et al., 2011; Lambiotte and Panzarasa, 2009; Pain, 2018; Qian et al., 2017). In
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particular, scientists collaborate not only with scientists in their own cities, but

also with scientists in other cities. Indeed, international collaboration in science,

an important modern phenomenon, has increased dramatically in the last two

decades (Adams, 2013; Chen et al., 2019; Leydesdorff and Wagner, 2008; Scellato

et al., 2015; Wagner and Leydesdorff, 2005).

The typical way to measure scientific collaboration relies on the fact that scientists

co-author published papers together, which can be described with a special type

of social networks – scientific collaboration networks (Newman, 2001a,c). In this

case, two scientists are considered connected if they have co-authored one or more

papers. Moreover, two scientists who are connected in scientific collaboration

networks can be seen as scientific acquaintances because most people who have

been co-authors usually know each other quite well (Newman, 2001d). Hence the

network of scientific collaboration is a genuine social network of scientists.

In the social sciences, it is widely acknowledged that social capital, which can

be extracted from social networks, plays an important role in maintaining or

hindering a wide range of performance-related outcomes at the individual and

group levels (Granovetter, 2005, 1973; Latora et al., 2013; Li et al., 2013). As cities

are becoming central loci of scientific activities (Bettencourt, 2013), it is therefore

essential to investigate the association between scientific network collaboration

patterns and scientific performance at the city level. Although previous studies

in recent years have explored scientific collaboration networks at the country or

the affiliation level (Cantner and Rake, 2014; Graf and Kalthaus, 2018; Guan

et al., 2016), it is surprising that there are very few studies conducted at the city

level (Guan et al., 2015), considering the growing demand for more theoretical
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and empirical research on scientific collaboration at the city level (Neal, 2011). In

addition, these very few studies concerned with the city level usually focus directly

on the structural patterns of the inter-city collaboration networks, where nodes

are cities, and links are simply constructed to reflect the scientific collaboration

between geographical places. Thus the resulting inter-city collaboration network of

cities aggregated from the individual scientist level lacks the actual collaboration

patterns of scientists within and across cities.

To address this limitation, in this chapter I will propose to measure the social

capital of a city by using the structural patterns of the scientific collaboration

network of its internal scientists and external collaborators. Indeed, a city may be

at the forefront of scientific performance not simply because it has elite resident

scientists, but also as a result of the collaborative links that the scientists living

in the city have with scientists in other places. To assess the interplay between

collaboration patterns and scientific performance at the city level, it is therefore

essential to account for both internal scientists and external collaborators (Hristova

et al., 2016).

To this end, I collected the data from Medline which is one of the leading

bibliometric data platforms, and is a publicly accessible repository of over 26

million publication records. Using two disambiguated data sets, Mapaffil (Torvik,

2015) and Author-ity (Torvik and Smalheiser, 2009), I tracked authors across

publications, associated them to the city of their affiliation indicated in the

publications, and established their collaboration ties. More specifically, this allowed

me to create longitudinal global scientific collaboration networks of scientists using

moving two-year time windows covering the period between 1990 and 2006. In
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each time window, each author is associated with her resident city. Therefore,

for each city, its internal scientists and external collaborators were identified

and their collaboration patterns were subsequently captured by the collaboration

network through a few sets of network measures which reflect the social capital of

a city from different angles (e.g., brokerage) that may be associated with scientific

performance.

Furthermore, in each time window, I quantify the scientific performance of a

city from two key perspectives: impact and innovation. More specifically, the

scientific impact of a city in a time window was measured by the impact factors of

the journals in which its internal scientists published papers during this window.

Similarly, the scientific innovation of a city was measured by the number of new

MeSH (medical subject headings) terms of papers, reflecting the new scientific

knowledge. The impact factors of journals were collected from SCImago and the

MeSH terms of papers were provided by Medline.

The remainder of this chapter is organised as follows. First, Section 4.2 presents the

theoretical framework and hypotheses tested in the Chapter. Second, Section 4.3

describes the data, network approach, measures, and statistical models for this

study. Third, Section 4.4 introduce descriptive and regression results obtained

from my analysis. Fourth, Section 4.5 explores the significance of the findings of

my work, discusses the policy implications of the results, outlines the limitations

of this study and offers some avenues for further research. Finally, Section 4.6

summarises the findings and their contribution to the literature.
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4.2 Theory and hypotheses

In this chapter, I propose that both internal scientists and external collaborators

need to be considered. On the one hand, internal scientists are obviously essential

because they are the main contributors to a city’s scientific performance. On the

other hand, external collaborators also need to be included due to the increasing

number of inter-city collaborations between scientists (Adams, 2013). This is likely

attributable to the development of modern communication technology that has

reduced the cost of inter-city collaboration (Adams et al., 2005). The interactions

of internal scientists and external collaborators of a city can be captured by the

scientific collaboration network where nodes are scientists and links represent the

co-authorship of scientific publications.

Recent studies have shown that central cities can benefit from their positions in

inter-city scientific collaboration networks as they have more opportunities for

knowledge creation and information diffusion (Guan et al., 2015). However, the

inter-city scientific collaboration network is constructed by simply aggregating

the collaboration between scientists in different cities, thus missing scientists’

actual structural collaboration patterns. This approach might largely limit our

understanding of the interplay between social capital and the scientific performance

of cities. In this chapter, by drawing on the scientific collaboration network of

internal scientists and external collaborators, the obtained integrated collaboration

network can offer deeper insights into the social capital of a city.
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4.2.1 Brokerage and scientific performance

Among various network mechanisms of social capital, I focus on open struc-

tures (Burt, 2009), rich in brokerage opportunities. The benefits that actors can

extract from open structures have been thoroughly discussed in Chapter 2.

The brokerage of a city can be further divided into two finer-grained types – inter-

nal brokerage and external brokerage – by considering solely internal scientists

and external collaborators, respectively. Internal brokerage focuses on internal

residents of a city and looks at the absence of ties among these internal residents.

By contrast, external brokerage focuses on a city’s external collaborators and

quantifies the absence of ties among these external collaborators. On the one hand,

internal brokerage reflects the degree of non-redundant information that a city

can extract from internal resident scientists. The scientific collaboration network

of internal scientists of a city rich in structural holes can allow the city to possess

information benefits and control benefits. On the contrary, a city associated with

highly connected internal scientists with fewer structural holes might be limited by

redundant ideas and information, becoming less impactful and innovative in terms

of scientific performance. On the other hand, although external brokerage of a

city describes the richness of structural holes among external collaborators, which

is similar to internal brokerage, the two types of brokerage may have a distinct

relationship with the scientific performance of a city. Meeting with scientists in

the same affiliation or city to discuss and collaborate is relatively simple. By

contrast, it may be more challenging to maintain collaboration with external

collaborators due to time difference and geographic distance. In this case, higher

external brokerage, indicating a less cohesive structure between scientists and their
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external collaborators, may result in the lack of a sense of belonging (Coleman,

1988), trust (Coleman, 1994; Reagans and McEvily, 2003; Uzzi, 1997) and more

costly communication channels to exchange complex and proprietary informa-

tion (Hansen, 1999; Uzzi, 1997). This line of reasoning resonates with the theory

of “closed” structure of social capital advocated by Coleman (Coleman, 1988).

Based on the above arguments and discussion, I propose the following hypotheses:

Hypothesis 1(a-b). The internal brokerage of a city is positively associated

with its scientific impact (1(a)) and innovation (1(b)).

Hypothesis 1(c-d). The external brokerage of a city is negatively associated

with its scientific impact (1(c)) and innovation (1(d)).

4.2.2 Strong ties and scientific performance

Another fundamental network mechanism of social capital is related to the concept

of “strength of weak ties”. In a seminal paper (Granovetter, 1973), Granovetter

defined the strength of a tie as “a (probably linear) combination of the amount of

time, the emotional intensity, the intimacy (mutual confiding), and the reciprocal

services which characterise the tie” (p. 1361). In addition, Granovetter argued

that the most useful network contacts are through “weak ties”. Intuitively, this

is because weak ties can allow individuals to be connected with a more diverse

set of alters such that they can increase the ranges of their networks (Uzzi, 1996;

Uzzi and Spiro, 2005). A lot of work has suggested that unusual and fruitful

recombination of existing components (e.g., ideas, information, and devices) is
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an important source of innovation, and access to diverse pools of knowledge and

perspectives can increase the chance of creating novel ideas (Bettencourt et al.,

2007b; Muller and Zenker, 2001; Singh, 2008). On the contrary, strong ties allow

individuals to bind themselves to each other, which in turn makes them more

redundant in obtaining new information. In my context concerned with a city,

as the proportion of strong ties among internal scientists increases, it is more

likely that scientists connected by strong ties become more similar to each other,

which likely prevents them from producing more impactful and novel work. In

addition, as scientists have limited time and energy, maintaining strong ties is

costly, and thus having too many strong relationships can be inefficient in the

long run (McFadyen and Cannella Jr, 2004; Perry-Smith and Shalley, 2003; Wang,

2016). On the other hand, strong ties among external collaborators may play a

different role in shaping scientific performance. As collaboration among internal

and external partners may be hindered by time differences and geographical

distances, a city’s scientific performance is likely to benefit from the strong ties

connecting its external collaborators, which in turn may exert mitigating effects on

the ease of collaboration. In this sense, the reduced intellectual diversity associated

with stronger bonds between geographically distant collaborators is likely to be

more than compensated for by the benefits in terms of lower coordination and

communication costs. Therefore, I hypothesise that:

Hypothesis 2(a-b). The proportion of internal strong ties of a city is negatively

associated with its scientific impact (2(a)) and innovation (2(b)).

Hypothesis 2(c-d). The proportion of external strong ties of a city is positively
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associated with its scientific impact (2(c)) and innovation (2(d)).

4.2.3 Diversity and scientific performance

Diversity, the new orthodoxy in city planning, has long been considered important

because it not only makes cities more appealing but also is the catalyst of scientific

performance (AlShebli et al., 2018), economic productivity (Florida, 2002; Jacobs,

1985, 2016), and social justice (Young, 2011). Since the 1960s, researchers from

different disciplines have been devising strategies for urban redevelopment which

stimulate both physical and social diversity (Fainstein, 2005), thus suggesting that

diversity is a critical characteristic of cities. This may partly be explained by the

fact that cities with diverse knowledge, experience, and skills among their internal

scientists and external collaborators can benefit from the integration of expertise,

successful project implementation, and accelerated cycle time for new knowledge

creation (Cummings, 2004; Eisenhardt and Tabrizi, 1995). In addition, diversity

is a complex concept since cities can be diverse in terms of various properties,

such as ethnicity, gender, age, and socio-economic background (Fainstein, 2005).

Indeed, depending on the research fields and questions, one of these attributes or

a mix of them may be applied by researchers in different studies. This chapter

focuses on the geographical diversity of a city as a function of the residents’

external collaborators. A city with high diversity in terms of geographical places

of external collaborators may enjoy diverse knowledge and expertise from different

backgrounds and research cultures (Barjak and Robinson, 2008). Previous studies

have suggested that geographically diverse scientific collaboration is associated
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with high research impact at the university and country levels (Abbasi and Jaafari,

2013). However, little attention has been paid to this association at the city level.

Based on the above arguments and discussion, I propose the following hypotheses:

Hypothesis 3(a-b). The geographical diversity of a city is positively associated

with its scientific impact (3(a)) and innovation (3(b)).

4.2.4 Interaction effects

Furthermore, I explore the idea that brokerage, the proportion of strong ties, and

geographical diversity may not play their roles independently when considering

their relationship with scientific performance. Specifically, I focus on two types of

interactions in this chapter: (i) the interaction between brokerage and proportion

of strong ties; and (ii) the interaction between brokerage and geographical diversity.

On the one hand, the salience of brokerage for performance may be mediated

by the proportion of strong ties as a result of the collaboration structure rich

in trust and common knowledge base brought by strong ties, which can provide

advantages for knowledge transfer (Hansen, 1999; Reagans and McEvily, 2003)

and knowledge creation (McFadyen and Cannella Jr, 2004; McFadyen et al., 2009).

On the other hand, the role of brokerage may also be amplified by geographical

diversity. For example, a city may benefit more from an increase in brokerage due

to the diverse knowledge and information brought by high diversity (Fleming et al.,

2007; Østergaard et al., 2011). Therefore, I can propose the following hypotheses:
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Hypothesis 4(a-b). The proportion of internal strong ties of a city moderates

the relationship between its internal brokerage and scientific impact (4(a)) and

innovation (4(b)).

Hypothesis 4(c-d). The proportion of external strong ties of a city moderates

the relationship between its external brokerage and scientific impact (4(c)) and

innovation (4(d)).

Hypothesis 5(a-b). The geographical diversity of a city moderates the relation-

ship between its internal brokerage and scientific impact (5(a)) and innovation

(5(b)).

Hypothesis 5(c-d). The geographical diversity of a city moderates the relation-

ship between its external brokerage and scientific impact (5(c)) and innovation

(5(d)).

4.3 Material and methods

4.3.1 Data

I combined four large-scale data sets for my analysis: Medline, Author-ity, MapAffil,

and SCImago. In what follows I shall detail each of them in turn.

First, Medline1 is a publicly accessible repository of over 26 million publication

records mostly related to life sciences. In Medline, the earliest publication year

dates back to 1867. Here, I will focus on the period between 1990 and 2006
1ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline-2018-sample/
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because the other two high-quality disambiguation data sets of scientists (Author-

ity (Torvik and Smalheiser, 2009)) and affiliations (MapAffil (Torvik, 2015)) are

restricted to this time period. Note that each Medline publication is associated

with a set of MeSH terms assigned to describe the content of the publication.

Second, Author-ity, developed by Ref. (Torvik and Smalheiser, 2009), contains

around 9 million unique scientists disambiguated from over 61 million scientists’

names that appeared in the Medline publications. Third, MapAffil2, developed by

Ref. (Torvik, 2015), associates over 37 million scientists’ affiliations that appear

in the Medline publications with disambiguated cities. This data set allows me

to map the affiliation string to the city in which this affiliation is located. By

merging Medline and Author-ity, I can obtain the necessary data to uniquely

identify a scientist across publications, which subsequently allows me to construct

global scientific collaboration networks. By further merging MapAffil with the

previous two data sets, I can extract a scientist’s publication history with the

geographical location at the city level, which can be used to map the scientist to

his or her resident city. The last mapping step is necessary because otherwise the

scientist’s affiliation listed in the publication would not be disambiguated, and

distinct versions of “Boston University” would exist in the data set. Notice that

from Mapaffil the locations of scientists are either at high-resolution (e.g., “Bethnal

Green, London, UK”) or low-resolution level (e.g., “London, UK”) of a city. I

mapped the high-resolution locations to the low-resolution level as suggested in

Refs. (Verginer and Riccaboni, 2020a,b). For example, “Bethnal Green, London,

UK” would be mapped to “London, UK”. Finally, SCImago3 provides me with
2http://abel.lis.illinois.edu/cgi-bin/mapaffil/search.pl
3https://www.SCImagojr.com/
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access to yearly impact factor scores for a large portion of journals indexed in

Medline. I shall detail how I calculate the scientific impact of cities based on

SCImago impact factors in Section 4.3.3.

4.3.2 Network construction

u1

u2
u3

u4

u5

u7

u6u10

City Scientist

Collaboration link

Collaboration network of scientists resident 
in London, Boston and Lucca.(a)

Collaboration network of internal scientists 
and external collaborators of London(b)

Collaboration network of 

internal scientists


of London

Collaboration network of 

external collaborators


of London

(c)

(d)

u1

u2
u3

u4

u5

u7

u6u10
Residence link

Figure 4.1: Schematic diagram of the workflow for constructing the collaboration
networks of internal scientists and external scientists of a city.

Given a focal window Tt = [t, t + τ) where t represents the focal year and τ

represents the number of years in each window, I can construct a scientific

collaboration network where nodes are scientists and links refer to co-authorship

of papers. For the length of the window Tt, I set it at 2 years, i.e., τ = 2. In the

following sections, I will focus on one time window Tt and thus omit the t symbol

in the notations when there is no ambiguity. In each time window, I construct the

scientific collaboration network G = (V , E) where nodes u ∈ V are scientists, and

undirected weighted links, denoted by E , represent (the intensity of) co-authorship

between scientists (see Figure 4.1 (a)). Note that V is composed of scientists who

have publications in the focal window Tt. I assign weights wS(u, v) to links based
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on the number of papers two scientists u and v co-authored in Tt and the number

of authors in each paper, as suggested by Newman in Ref. (Newman, 2001c).

Furthermore each scientist u is associated with a unique city of residence L(u)

in time window Tt. To determine L(u) in Tt, I choose the longest uninterrupted

sequence of cities closest to t in the time window, following the rules suggested

by authors of Refs. (Verginer and Riccaboni, 2020a,b). I choose this method

since it can discard ambiguous affiliations in publication sequences with spurious

affiliations, such as multiple affiliations in the same year, but either of these

appears only once.

I construct the collaboration network of city i G(i) consisted of its internal scientists

and external collaborators (see Figure 4.1 (b)). I denote the set of both internal

scientists and external collaborators as NS(i). I further extract the collaboration

network G in(i) of its internal scientists (see Figure 4.1 (c)) and the collaboration

network Gex(i) of its external collaborators (see Figure 4.1 (d)). I denote the set of

internal scientists of city i as N in
S (i), and the set of external collaborators of city i

as N ex
S (i). In this way, the extracted networks will allow me to define measures

(see Section 4.3.3) to properly test my hypotheses (see Section 4.2).

4.3.3 Measures

In what follows, I will introduce the dependent variables, control variables, and

independent variables. The main notations used in this chapter are summarised

in Table 4.2.
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Dependent variables

I measure the scientific performance of city i in Tt from two perspectives: scientific

impact, Γ(i), and scientific innovation, ∆(i). I quantify Γ(i) and ∆(i) in three

steps: (i) Let me denote the set of papers published in Tt as P. For each paper

p ∈ P, I first obtain its scientific impact, γ(p), and scientific innovation, δ(p).

γ(p) is measured by the 2-year impact factor of the journal where the paper was

published. δ(p) is measured by the number of new MeSH terms associated with

paper p. A MeSH term is considered as new for up to two years since its first

appearance in Medline; (ii) For paper p, I calculate the fraction, α(i, p), of city i

representing the ratio α(p, i) between the number of authors of paper p that are

resident in i and the total number of authors of paper p. For instance, if paper

p is co-authored by 4 scientists, three of whom reside in London and the other

in Boston, we would have: α(p, London) = 0.75, and α(p, Boston) = 0.25. This

measure allows me to proportionally allocate the scientific performance of each

paper to various relevant cities. If the impact factor of the journal of paper p is 4.5

and it contains 3 new MeSH terms, i.e., γ(p) = 4.5 and δ(p) = 3, London will be

associated with a value of impact γ(p) × α(p, London) = 4.5 × 0.75 = 3.375 and a

value of innovation δ(p) × α(p, London) = 3 × 0.75 = 2.25. Similarly, Boston will

be associated with a value of impact γ(p) × α(p, Boston) = 4.5 × 0.25 = 1.125 and

a value of innovation δ(p) × α(p, London) = 3 × 0.25 = 0.75; and (iii) For each

paper in P , I iterate step (ii) above and proportionally assign its scientific impact

and innovation to the corresponding cities. Then, for each city i, I aggregate the

scientific impact and innovation assigned by all the papers in P to obtain the final

scientific impact Γ(i) and innovation ∆(i) for city i in Tt. Formally, Γ(l) and ∆(l)
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can be expressed as:

Γ(i) =
∑

p∈P(Tt)
γ(p) × α(p, i),

∆(i) =
∑

p∈P(Tt)
δ(p) × α(p, i).

(4.1)

4.3.4 Control variables

Size

To control for scale influence, I take the logarithm of the total number of internal

scientists and external collaborators as the size of the city i. I denote the size of

city i as Q(i) such that

Q(i) = ln(|NS(i)| + 1) (4.2)

where | · | represents the number of elements in a set.

Centralisation

To control for the heterogeneity of degree distribution of the collaboration network

of internal scientists and external collaborators of city i, I select centralisation (Free-

man, 1978) as the control variable. In my case, I define the centralisation H(i) of

city i in two steps: (i) by calculating the sum of the degree difference between

the highest degree node and all other nodes in NS(i); and (ii) by normalising the

value of (i) by the maximum value of such sum of degree difference in any network

containing |NS(i)| nodes. Note that the maximum centralisation of a network

with a fixed number of nodes can be achieved by a star network where one central
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node connects all other nodes, and there are no connections between all other

nodes. Formally, I define H(i) as:

H(i) =

∑
u∈NS(i)

(deg(u∗) − deg(u))

(|NS(i)| − 1)(|NS(i)| − 2) , (4.3)

where deg(u) is the unweighted degree (i.e., number of collaborators) of scientist

u in NS(i). u∗ is the scientist with the highest degree in NS(i). |NS(i)| − 2 is the

degree difference between the central node and any other surrounding node in a

star network containing |NS(i)| nodes.

Betweenness and closeness centrality

Recent work has suggested that the scientific performance of a city is influenced by

its position in the inter-city collaboration network where nodes are cities and a link

is established between two cities if scientists in these two cities have co-authored

scientific publications (Guan et al., 2015). The inter-city collaboration network

(see Figure 4.2) can be seen as an aggregation of the collaboration network of

scientists studied in my work. In this case, the strength wL(i, j) of the link between

cities i and j in the inter-city collaboration network is obtained by aggregating

the weights of collaboration of scientists from these two cities.

To control for the position of city i in the inter-city collaboration network, I

consider two traditional centrality measures: betweenness BC(i) and closeness

CC(i) centralities (Freeman, 1977). On the one hand, betweenness centrality

measures the potential of gatekeeping, brokering and controlling the information

flow and the ability to liaise between otherwise separate parts of the network.
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A node with higher betweenness centrality that lies on communication paths

can control the communication flow between others, and thus may well play an

important role for the functioning of the network. On the other hand, closeness

centrality measures, for a given node, the expected time until the arrival of

whatever is flowing through the network. A node with higher closeness centrality

is considered important as it is close to most other nodes. In my context, a city

with high betweenness and closeness centralities likely plays the role of a gatekeeper

or broker of knowledge, and it can also diffuse or receive knowledge from others in

a relatively short time. I use NetworkX4 to calculate these two weighted centrality

measures. More specifically, as these two measures are based on the shortest paths

between nodes, I use the reciprocal of the weight of collaboration since a higher

weight of collaboration of two cities suggests that the distance between them is

shorter.

Figure 4.2: Inter-city collaboration network for focal year 2006. The figure
shows the largest connected component of the inter-city collaboration network.
The size of a node is proportional to the city’s scientific impact. The colour
intensity of a node is proportional to its scientific innovation. The width of an
edge is proportional to its weight. Edges with weights less than 20 are removed.
Self-loops are also excluded.

4https://networkx.github.io/
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4.3.5 Independent variables

Brokerage

The “geo-social brokerage potential” of a city refers to the opportunities of

brokerage the city can offer with respect to the collaboration networks of its

residents and those connected to them (Hristova et al., 2016). Following the

formalisation proposed in Refs. (Borgatti, 1997; Burt, 2009; Hristova et al., 2016),

I first measured the internal brokerage Sin(i) of city i in two steps: (i) by calculating

the non-redundant portion of the the collaboration network of the city’s internal

scientists; and (ii) by normalising the value of (i) by |N in
S (i)|, resulting in the

fraction of non-redundant contacts of city i’s collaboration network of internal

scientists. Formally, Sin(i) can be expressed as:

Sin(i) =
|N in

S (i)| −

∑
u,v∈N in

S (i)
e(u, v)

|N in
S (i)|

|N in
S (i)| = 1 −

∑
u,v∈N in

S (i)
e(u, v)

|N in
S (i)|2 , (4.4)

where e(u, v) is 1 if two nodes u, v are connected and 0 otherwise.

Similarly, I further measure the external brokerage Sex(i) of city i by only con-

sidering the collaboration network of the city’s external collaborators. Formally,

Sex(i) can be expressed as:

Sex(i) = 1 −

∑
u,v∈N ex

S (i)
e(u, v)

|N ex
S (i)|2 . (4.5)
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Proportion of strong ties

The strength of a tie between two scientists can be measured based on the number

of papers they coauthored. In this case, I quantify the ratio between a city’s

internal strong ties and the total number of ties between the city’s internal

scientists:

Rin(i) =
∑

u,v∈N in
S (i) e#(u, v)∑

u,v∈N in
S (i) e(u, v) . (4.6)

where e#(u, v) is 1 if the tie between scientists u, v is a strong tie and 0 otherwise.

Specifically, a tie is regarded as strong if two scientists co-author at least 4 papers

in time window Tt, i.e., they co-authored on average 2 papers each year. Similarly,

the proportion of external strong ties can be defined as:

Rex(i) =
∑

u,v∈N ex
S (i) e#(u, v)∑

u,v∈N ex
S (i) e(u, v) . (4.7)

Geographical diversity

I define the geographical diversity D(i) of city i in terms of the diversity of the

strength of collaboration between city i and the cities associated with scientists in

NS(i).

To this end, I define the set of resident cities of the external collaborators of city i

as NL(i). I use Gini impurity to compute the geographical diversity D(i) of NL(i):

D(i) = 1 −
∑

j∈NL(i)
P (i, j)2, (4.8)
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where P (i, j) is the probability of city i to have a collaboration with city j included

in NL(i):

P (i, j) = wL(i, j)∑
k∈NL(i)

wL(i, k)
, (4.9)

To illustrate how these measures are calculated, in Table 4.1 I focus on London

and compute the corresponding measures based on the collaboration networks

constructed according to Figure 4.1.

4.3.6 Statistical models

I estimate linear mixed-effects models (LMEMs), also referred to as multilevel

models or hierarchical linear models. The LMEM (Searle et al., 2009) contains

both fixed effects and random effects. LMEMs are particularly useful when data

are organised into more than one level (i.e., nested data). In my case, as cities

are nested within countries, I use the mixed module in Stata to fit a three-level

mixed model with random intercepts at both the country and city levels. Thus

my model has two random-effects. The first is a random intercept at the city level

(level 2), and the second is a random intercept at the country level (level 3).

For either scientific impact or innovation, I will estimate three models: (i) a

baseline model that includes only control variables (see Equation (4.10)); (ii)

a model that includes all independent (control and independent) variables (see

Equation (4.11)); and (iii) a model in which I also add interaction terms between
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independent variables (see Equation (4.12)). Formally, we have:

Scientific performancetij = β0 + β1Qtij + β2Htij + β3BCtij + β4CCtij+
15∑

T =0
dT,t,i,jδT + µ

(2)
ij + µ

(3)
j + ϵtij (4.10)

Scientific performancetij = β0 + β1Qtij + β2Htij + β3BCtij + β4CCtij+

β5S
in
tij + β6S

ex
tij + β7R

in
tij + β8R

ex
tij + β9Dtij+

15∑
T =0

dT,t,i,jδT + µ
(2)
ij + µ

(3)
j + ϵtij (4.11)

Scientific performancetij = β0 + β1Qtij + β2Htij + β3BCtij + β4CCtij+

β5S
in
tij + β6S

ex
tij + β7R

in
tij + β8R

ex
tij + β9Dtij+

β10(Sin
tij × Rin

tij) + β11(Sex
tij × Rex

tij) + β12(Sin
tij × Dtij) + β13(Sex

tij × Dtij)+
15∑

T =0
dT,t,i,jδT + µ

(2)
ij + µ

(3)
j + ϵtij (4.12)

where t represents the focal year (level 1), i represents the city (level 2), and j

represents the country (level 3). β0 to β13 are fixed parameters. ∑15
T =0 dT,t,i,jδT is

the year fixed effect where dT,t,i,j is the dummy variable for T -th focal year. As

there are in total 17 focal years, I have 16 dummy variables here. µ
(2)
ij is the level-2

(i.e., city-level) random intercept, µ
(3)
j is the level-3 (i.e., country-level) random

intercept, ϵtij is the level-1 (i.e., occasion-level) error term. Scientific performance
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will be measured either as scientific impact (Γ) or as scientific innovation (∆).

Here I shall also introduce the assumptions underlying the above models: (i) The

country-level random intercept (µ(3)
j ) has zero expectation, given the independent

variables; (ii) Similarly, the city-level random intercept (µ(2)
ij ) has zero expectation,

given the independent variables and µ
(3)
j ; (iii) There is zero correlation between

independent variables and the random intercept at the country level (i.e., level-3

exogeneity); (iv) Similarly, there is zero correlation between independent variables

and the random intercept at the city level (i.e., level-2 exogeneity); (v) There

is zero correlation between random intercepts (µ(2)
ij and µ

(3)
j ) across countries

and cities; (vi) The variance of the random intercept at the country level is

homoskedastic given the independent variables; (vii) Similarly, the variance of

the random intercept at the city level is homoskedastic given the independent

variables and µ
(3)
j ; (viii) The level-1 error term ϵtij has zero expectation, given the

independent variables and the random intercepts (µ(3)
j and µ

(2)
ij ); and (ix) There

is zero correlation between the independent variables and the level-1 residual (i.e.,

level-1 exogeneity), and zero correlation between the level-1 residual and both

random intercepts (µ(3)
j and µ

(2)
ij ).

Unlike the two random intercepts, the level-1 residuals were not assumed to be

homoskedastic. To this end, I used Stata to carry out the analysis with the above

models and added the residuals(independent, by(t)) to fit the models with

heteroskedastic level-1 residuals over occasions (focal year, t). I also standardised

(i.e., subtract the mean and divide by the standard deviation) all the independent

and control variables to make the interpretations of coefficients more reasonable,

considering the range of some covariates is very small. Moreover, I estimated
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robust standard errors by using vce(robust) in Stata.

4.4 Results

Table 4.3: Descriptive statistics
Mean SD Min Max Correlation

1 2 3 4 5 6 7 8 9 10 11

Control variables

1 Size, Q 6.570 1.166 4.094 10.532 1.000

2 Centralisation, H 0.071 0.061 0.003 0.539 -0.131∗∗∗ 1.000

3 Betweenness, BC 0.001 0.004 0.000 0.104 0.373∗∗∗ -0.084∗∗∗ 1.000

4 Closeness, CC 0.954 0.144 0.390 1.283 0.638∗∗∗ -0.132∗∗∗ 0.195∗∗∗ 1.000

Independent variables

5 Internal brokerage, Sin 0.995 0.010 0.706 1.000 0.255∗∗∗ -0.356∗∗∗ 0.061∗∗∗ 0.100∗∗∗ 1.000

6 External brokerage, Sex 0.931 0.082 0.109 0.999 0.402∗∗∗ -0.538∗∗∗ 0.118∗∗∗ 0.489∗∗∗ 0.142∗∗∗ 1.000

7 Proportion of internal strong ties, Rin 0.016 0.057 0.000 0.972 0.164∗∗∗ 0.260∗∗∗ 0.081∗∗∗ 0.144∗∗∗ -0.379∗∗∗ -0.040∗∗∗ 1.000

8 Proportion of external strong ties, Rex 0.074 0.176 0.000 1.000 0.356∗∗∗ 0.501∗∗∗ 0.129∗∗∗ 0.120∗∗∗ -0.021∗∗ -0.235∗∗∗ 0.314∗∗∗ 1.000

9 Geographical diversity, D 0.930 0.075 0.153 0.993 0.592∗∗∗ -0.065∗∗∗ 0.125∗∗∗ 0.314∗∗∗ 0.141∗∗∗ 0.448∗∗∗ 0.056∗∗∗ 0.153∗∗∗ 1.000

Dependent variables

10 Scientific impact, Γ 1548.287 3177.206 23.384 42328.692 0.652∗∗∗ -0.185∗∗∗ 0.784∗∗∗ 0.410∗∗∗ 0.162∗∗∗ 0.262∗∗∗ 0.043∗∗∗ 0.181∗∗∗ 0.275∗∗∗ 1.000

11 Scientific innovation, ∆ 4.180 10.698 0.000 234.480 0.477∗∗∗ -0.215∗∗∗ 0.588∗∗∗ 0.405∗∗∗ 0.131∗∗∗ 0.224∗∗∗ 0.023∗∗ 0.034∗∗∗ 0.205∗∗∗ 0.792∗∗∗ 1.000

Observations 10897

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4.4: Top 10 cities for focal year 2006. Non-US cities are in bold.

Ranking Size, Q Centralisation, H Betweenness centrality, BC Closeness centrality, CC Internal brokerage, Sin External brokerage, Sex

1 London, UK Victoria, BC, Canada Paris, France Paris, France Sao Paulo, Brazil Boston, MA, USA

2 Boston, MA, USA Arlington, TX, USA Boston, MA, USA London, UK London, UK Bethesda, MD, USA

3 Paris, France Lancaster, Lancashire, UK London, UK Boston, MA, USA Tokyo, Japan Birmingham, AL, USA

4 New York, NY, USA Duluth, MN, USA New York, NY, USA Cambridge, MA, USA New York, NY, USA Toronto, ON, Canada

5 Tokyo, Japan Eugene, OR, USA Stanford, CA, USA Stanford, CA, USA Guangzhou, China Berlin, Germany

6 Bethesda, MD, USA South Bend, IN, USA Cambridge, MA, USA New York, NY, USA Paris, France Rochester, MN, USA

7 Beijing, China Medford, MA, USA Moskva, Russia Cambridge, Cambridgeshire, UK Shanghai, China Leiden, Zuid-Holland, Netherlands

8 Baltimore, MD, USA Fairfax, VA, USA Bethesda, MD, USA Roma, Lazio, Italy Boston, MA, USA Basel, Switzerland

9 Los Angeles, CA, USA Essex, UK Tokyo, Japan Bethesda, MD, USA Madrid, Spain Indianapolis, IN, USA

10 San Diego, CA, USA Kent, OH, USA Beijing, China Oxford, Oxfordshire, UK Sydney, NSW, Australia Portland, OR, USA

Ranking Proportion of internal strong ties, Rin Proportion of external strong ties, Rex Geographical diversity, D Scientific impact, Γ Scientific innovation, ∆

1 DeKalb, IL, USA Shigenobu-cho, Toon, Ehime, Japan Paris, France Boston, MA, USA London, UK

2 Upton, NY, USA Egham, Surrey, UK London, UK New York, NY, USA New York, NY, USA

3 Arlington, TX, USA Rostock, Germany Tucson, AZ, USA London, UK Boston, MA, USA

4 Stony Brook, NY, USA Perugia, Umbria, Italy München, Germany Paris, France Paris, France

5 Stanford, CA, USA Bochum, Germany Wien, Austria San Diego, CA, USA Beijing, China

6 Pisa, Toscana, Italy Bergen, Norway Moskva, Russia Bethesda, MD, USA Los Angeles, CA, USA

7 Beijing, China Albany, NY, USA New York, NY, USA Baltimore, MD, USA Bethesda, MD, USA

8 Karlsruhe, Germany Louisville, KY, USA State College, PA, USA Philadelphia, PA, USA San Diego, CA, USA

9 Norfolk, VA, USA Coventry, West Midlands, UK Ciudad de Mexico, DF, Mexico Los Angeles, CA, USA Philadelphia, PA, USA

10 South Bend, IN, USA Victoria, BC, Canada San Diego, CA, USA Houston, TX, USA Sao Paulo, Brazil
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4.4.1 Descriptive statistics

I first constructed the collaboration networks of scientists for 17 time windows Tt

with t ∈ {1990, 1991, ..., 2006}, respectively. In each Tt, each scientist is associated

with her resident city. Then I computed the measures proposed in Section 4.3.3,

which results in a 17-year panel data set. In what follows, I will focus on the

cities whose internal size (|N in
S (i)|) is at least 50 in all the 17 windows. The final

data set is thus a balanced panel data which contains 641 cities grouped into 64

countries with focal years in the period 1990 − 2006.

Table 4.3 shows the unstandardised descriptive statistics (mean, standard deviation,

minimum, maximum, and pairwise Pearson correlation) included in my study.

First, there is no strong correlation between control variables and independent

variables, which mitigates the potential multicollinearity issue. Second, there

is a strong positive correlation between scientific impact and innovation, which

suggests that a city with higher scientific impact at the same time is likely to

produce higher scientific innovation. Third, all control variables and independent

variables (except centralisation) are positively correlated with scientific impact

and innovation. In particular, size shows a very strong correlation with scientific

impact and innovation. Last, my proposed measures can naturally provide the

rankings of cities from different perspectives. As an example, I show the top 10

cities for the last focal year (i.e., 2006) in Table 4.4.
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Table 4.5: Three-level hierarchical random-intercept model with heteroskedastic
level-1 residuals over occasions (focal year). Independent and control variable are
standardised by subtracting mean and dividing by standard deviation.

(1) (2) (3) (4) (5) (6)

Scientific impact, Γ Scientific innovation, ∆

Internal brokerage, Sin 13.85∗∗∗ 13.68∗∗∗ 0.145∗∗∗ 0.183∗∗∗

(2.786) (4.327) (0.0200) (0.0441)

External brokerage, Sex 21.55∗∗∗ 12.77∗∗∗ -0.175∗∗∗ -0.0636

(3.982) (4.278) (0.0619) (0.0413)

Proportion of internal strong ties, Rin -5.874 -3.320 0.0706∗∗ 0.0582∗

(6.009) (8.059) (0.0287) (0.0314)

Proportion of external strong ties, Rex 32.13∗∗∗ 48.76∗∗∗ -0.309∗∗∗ -0.353∗∗∗

(6.104) (8.498) (0.0672) (0.0770)

Geographical diversity, D -45.22∗∗∗ -44.53∗∗∗ 0.356∗ 0.394∗∗

(4.961) (5.156) (0.182) (0.170)

Sin × Rin 1.350∗∗ -0.00464

(0.564) (0.00359)

Sex × Rex 29.08∗∗∗ -0.0547∗∗∗

(2.707) (0.0157)

Sin × D 10.68∗∗∗ 0.00453

(3.179) (0.0161)

Sex × D -2.954∗∗ 0.0596∗∗∗

(1.311) (0.00760)

Control variables

Size, Q 427.7∗∗∗ 489.6∗∗∗ 511.0∗∗∗ 2.441∗∗∗ 2.354∗∗∗ 2.287∗∗∗

(28.89) (26.98) (28.91) (0.181) (0.221) (0.225)

Centralisation, H -27.94∗∗∗ -22.75∗∗∗ -26.62∗∗∗ -0.399∗∗∗ -0.319∗∗∗ -0.244∗∗∗

(6.164) (4.635) (5.439) (0.0433) (0.0415) (0.0421)

Betweenness centrality, BC 138.3 137.2 132.3 -0.925∗∗∗ -0.877∗∗∗ -0.865∗∗∗

(128.1) (130.3) (131.1) (0.256) (0.261) (0.263)

Closeness centrality, CC -27.75∗∗∗ -44.74∗∗∗ -44.09∗∗∗ 0.606∗∗∗ 0.719∗∗ 0.689∗∗

(4.527) (4.116) (4.439) (0.227) (0.284) (0.270)

Focal year, t Fixed Fixed Fixed Fixed Fixed Fixed

Constant 1200.0∗∗∗ 1209.6∗∗∗ 1218.8∗∗∗ 5.206∗∗∗ 5.293∗∗∗ 5.248∗∗∗

(170.3) (169.5) (168.8) (0.708) (0.714) (0.717)

Observations 10897 10897 10897 10897 10897 10897

AIC 161845.6 161694.9 161595.6 63008.4 62901.1 62895.9

BIC 162137.5 162023.2 161953.1 63300.2 63229.4 63253.4

Log lik. -80882.8 -80802.4 -80748.8 -31464.2 -31405.6 -31399.0

Robust standard errors in parentheses.

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.6: Summary of regression results for hypothesis testing.

Scientific impact, Γ Scientific innovation, ∆

Hypothesis Regression Hypothesis Regression

Internal brokerage, Sin 1(a): + 1(a): + 1(b): + 1(b): +

External brokerage, Sex 1(c): − 1(c): + 1(d): − 1(d): −

Proportion of internal strong ties, Rin 2(a): − 2(a): NS 2(b): − 2(b): +

Proportion of external strong ties, Rex 2(c): + 2(c): + 2(d): + 2(d): −

Geographical diversity, D 3(a): + 3(a): − 3(b): + 3(b): +

Sin × Rin 4(a): Yes 4(a): + 4(b): Yes 4(b): NS

Sex × Rex 4(c): Yes 4(c): + 4(d): Yes 4(d): −

Sin × D 5(a): Yes 5(a): + 5(b): Yes 5(b): NS

Sex × D 5(c): Yes 5(c): + 5(d): Yes 5(d): +

+: statistically significant positive relationship; −: statistically significant negative relationship;

NS: statistically not significant. Note that the hypotheses concerned with interaction effects do

not specify the sign. That is why ‘Yes’ is used instead of a specific sign. Green (red) colour means

that the hypothesis and the corresponding regression result are in agreement (disagreement).

Grey colour means that regression results are statistically not significant. Regression results

for hypotheses 1(a-d), 2(a-d) and 3(a-d) are based on Models 2 and 4 in Table 4.5. Regression

results for hypotheses 4(a-d) and 5(a-d) are based on Models 3 and 6 in Table 4.5.

4.4.2 Regression results

Table 4.5 summarises the regression estimates from three-level hierarchical random-

intercept models. Note that all the independent and control variables are stan-

dardised. Each coefficient can thus be interpreted as the expected change of

the mean of the dependent variable as the independent variable varies by one
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standard deviation while holding all other variables constant. In Table 4.5, Models

1-3 refer to scientific impact, and Models 4-6 refer to scientific innovation. I

also used information criteria (AIC and BIC) to compare Models 3 and 6 to

the corresponding models that do not have the heteroskedastic residual errors.

Results are in favour of the models with the heteroskedastic residual errors (AIC:

161595.6 (with residuals term) < 165367.3 (without residuals term) and BIC:

161953.1 (with residuals term) < 165608.1 (without residuals term) for Model 3;

AIC: 62895.9 (with residuals term) < 70234.4 (without residuals term) and BIC:

63253.42 (with residuals term) < 70475.18 (without residuals term) for Model

6). Table 4.6 summarises the comparisons between hypotheses and empirical

regression results.

Scientific impact

Model 1 I start with the baseline model, Model 1, which includes only control

variables. First, as expected, the baseline model indicates that size, measured

by the logarithm of the total number of internal scientists and external collab-

orators of a city, is positively and significantly associated with scientific impact

(β1 = 427.7, p < 0.01). Second, centralisation is negatively and significantly

associated with scientific impact (β2 = −27.94, p < 0.01). Third, the association

between betweenness centrality and scientific impact is not statistically significant

(β3 = 138.3, p > 0.1). Fourth, closeness centrality is negatively and significantly

associated with scientific impact (β4 = −27.75, p < 0.01).



4.4. Results 85

Model 2 To test Hypotheses 1(a), 1(c), 2(a), 2(c), and 3(a), I regress a city’s

scientific impact on both control and independent variables, that is, brokerage,

proportion of strong ties and geographical diversity. First, both internal (β5 =

13.85, p < 0.01) and external (β6 = 21.55, p < 0.01) brokerage of a city are

positively and significantly associated with its scientific impact. Thus, Hypothesis

1(a) is supported, and Hypothesis 1(c) is not supported. This finding suggests

that the more a city brokers between external collaborators, the higher the

scientific impact. This is despite the fact that brokerage may induce higher

coordination and communication costs due to the geographical distance separating

the external collaborators. Second, the association between the proportion of

internal strong ties and scientific impact is not significant (β7 = −5.874, p > 0.1).

Hence, Hypothesis 2(a) is not supported. Moreover, the relationship between the

proportion of external strong ties and scientific impact is positive and significant

(β8 = 32.13, p < 0.01), and Hypothesis 2(c) is supported. Thus, while a city gains

from brokering between externals, the costs associated with lack of brokerage can

be offset by the benefits arising from strongly connected collaborators, among

whom communication and joint work are likely to become smoother and less costly.

Third, the association between geographical diversity (β9 = −45.22, p < 0.01)

and scientific impact is negative and significant. Therefore, Hypothesis 3(a) is

not supported. This indicates that by controlling for other variables, higher

geographical diversity of a city’s external collaborators is associated with lower

scientific impact.

Model 3 Building on Model 2, in Model 3 I further add interaction terms of

brokerage and proportion of strong ties, and brokerage and geographical diversity.
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Model 3 thus includes all the control variables, the independent variables, and two

types of interaction terms. I use Model 3 to test Hypotheses 4(a), 4(c), 5(a), and

5(c). On the one hand, in Model 3, the interaction (β10 = 1.350, p < 0.01) between

internal brokerage and proportion of internal strong ties is positive and significant,

while that (β11 = 29.08, p < 0.01) of external brokerage and proportion of external

strong ties is also positive and significant. Hence, Hypotheses 4(a) and 4(c) are

supported. On the other hand, in Model 3, the interaction (β12 = 10.68, p < 0.01)

between internal brokerage and geographical diversity is positive and significant,

and that (β13 = −2.954, p < 0.05) of external brokerage and geographical diversity

is negative and significant. Hence, Hypotheses 5(a) and 5(c) are supported.

Scientific innovation

Model 4 As in Model 1, I begin with the baseline model, Model 4, including

solely control variables. First, as expected, the baseline model suggests that

the association between size and scientific innovation is positive and significant

(β1 = 2.441, p < 0.01). Second, the relationship between centralisation and

scientific innovation is negative and significant (β2 = −0.399, p < 0.01). Third,

the relationship between betweenness centrality and scientific innovation is negative

and significant (β3 = −0.925, p < 0.01). Fourth, closeness centrality is positively

and significantly related with scientific innovation (β4 = 0.606, p < 0.01).

Model 5 To test Hypotheses 1(b), 1(d), 2(b), 2(d), and 3(b), similar to Model 2,

after adding control variables as in Model 1, in Model 5 I regress a city’s scientific

innovation on the independent variables including brokerage, the proportion of
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strong ties and geographical diversity. First, internal brokerage (β5 = 0.145, p <

0.01) is positively and significantly associated with scientific innovation, thus

supporting Hypothesis 1(b). In addition, external brokerage (β6 = −0.175, p <

0.01) is negatively and significantly related to scientific innovation, which is as

expected. Thus, Hypothesis 1(d) is supported. Second, the association between the

proportion of internal (β7 = 0.0706, p < 0.05) strong ties and scientific innovation

is positive and significant, and the relationship between the proportion of external

(β8 = −0.309, p < 0.01) strong ties and scientific innovation is negative and

significant. Hence both Hypotheses 2(b) and 2(d) are rejected. Results suggest

that a city can benefit from higher scientific innovation if its proportion of internal

strong ties is higher while the proportion of external strong ties is lower. Third, as

expected, geographical diversity (β9 = 0.356, p < 0.1) is positively and significantly

associated with scientific innovation. Hence, Hypothesis 3(b) is supported.

Model 6 Based on Model 5, in Model 6 I include interaction terms of brokerage

and proportion of strong ties, and brokerage and geographical diversity. Model

6 thus includes all the control variables, independent variables, and two types

of interaction terms. I use Model 6 to test Hypotheses 4(b), 4(d), 5(b), and

5(d). On the one hand, in Model 6, the interaction (β10 = −0.00464, p > 0.1)

between internal brokerage and proportion of internal strong ties is not significant,

while that (β11 = −0.0547, p < 0.01) of external brokerage and proportion of

external strong ties is negative and insignificant. Hence, Hypothesis 4(b) is

rejected, but 4(d) is supported. On the other hand, in Model 6, the interaction

(β12 = 0.00453, p > 0.1) between internal brokerage and geographical diversity

is not significant, and that (β13 = 0.0596, p < 0.01) of external brokerage and
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geographical diversity is positive and significant. Therefore, Hypothesis 5(b) is

rejected, while Hypothesis 5(d) is supported.

4.4.3 Visualisation of interaction effects

To make it easier to interpret the results concerned with interactions, I visualise

the interaction effects by plotting the heatmaps of predicted margins using Models

3 and 6. Results for interactions between brokerage and proportion of strong

ties are shown in Figure 4.3. Results for interactions between brokerage and

geographical diversity are shown in Figure 4.4. In each panel in Figures 4.3

and 4.4, scientific impact or innovation is predicted as a function of two focal

variables while keeping other variables at their means. The interaction terms in

my models are responsible for the curvature of the contour lines in the panels in

Figures 4.3 and 4.4. Without interactions, the contour lines between different

levels of colours would be straight (see Figures 4.3b and 4.4b). The curvature

demonstrates that the relationship between the (internal or external) brokerage

and scientific impact or innovation differs across levels of proportion of (internal

or external) strong ties or geographical diversity, and vice versa.

4.5 Discussion and conclusion

In this study, I mainly found that (i) the same independent covariate (e.g.,

geographical diversity) may have different relationships with different performance-

related outcomes of a city, thus highlighting the importance of considering scientific

performance from different angles; (ii) the internal and external measures of



4.5. Discussion and conclusion 89

(a)

3 2 1 0 1 2 3
Internal brokerage, S in

3

2

1

0

1

2

3

Pr
op

or
tio

n 
of

 in
te

rn
al

 st
ro

ng
 ti

es
, R

in

1200

1220

1240

1260

1280

1300

Sc
ie

nt
ifi

c 
im

pa
ct

, 

(b)

3 2 1 0 1 2 3
Internal brokerage, S in

3

2

1

0

1

2

3

Pr
op

or
tio

n 
of

 in
te

rn
al

 st
ro

ng
 ti

es
, R

in
3.25

3.50

3.75

4.00

4.25

4.50

Sc
ie

nt
ifi

c 
in

no
va

tio
n,

 

(c)

2 0 2
External brokerage, Sex

3

2

1

0

1

2

3

Pr
op

or
tio

n 
of

 e
xt

er
na

l s
tro

ng
 ti

es
, R

ex

1000

1200

1400

1600

Sc
ie

nt
ifi

c 
im

pa
ct

, 

(d)

3 2 1 0 1 2 3
External brokerage, Sex

3

2

1

0

1

2

3

Pr
op

or
tio

n 
of

 e
xt

er
na

l s
tro

ng
 ti

es
, R

in

2.5

3.0

3.5

4.0

4.5

5.0

Sc
ie

nt
ifi

c 
in

no
va

tio
n,

 

Figure 4.3: Visualisation of interaction effects between brokerage and
proportion of strong ties in Models 3 and 6 in Table 4.5. The figure plots
the scientific impact (Panels (a) and (c)) and innovation (Panels (b) and (d)) of a
city predicted as a function of internal or external brokerage (standardised), and
proportion of strong ties (standardised).
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Figure 4.4: Visualisation of interaction effects between brokerage and
geographical diversity in Models 3 and 6 in Table 4.5. The figure plots
the scientific impact (Panels (a) and (c)) and innovation (Panels (b) and (d)) of a
city predicted as a function of internal or external brokerage (standardised), and
geographical diversity (standardised).
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social capital (e.g., brokerage) may have distinct associations with the same

performance-related outcome, thus suggesting that my proposed finer-grained

measures can capture different perspectives of network collaboration patterns; and

(iii) estimates of interaction effects reveal that these measures do not play their

roles independently. Specifically, I found that brokerage can be moderated by the

proportion of strong ties and geographical diversity.

4.5.1 Implications for research

Prior studies (Guan et al., 2015) concerned with the relationship between scientific

collaboration networks and the scientific performance of cities focused mainly on

the inter-city collaboration network where nodes are the cities and links represent

the collaboration between cities. This type of method ignores the actual interaction

patterns among all scientists somehow related to cities. For example, two cities

with equivalent topological structures in the inter-city collaboration network may

have dramatically different collaboration patterns among their internal scientists.

This limitation has been addressed in this chapter by proposing that a city can

be explicitly expressed as a function of the collaboration network of its internal

scientists and external collaborators through several network measures to quantify

its social capital. By assembling a large-scale longitudinal and global data set from

Medline, Author-ity, MapAffi, and SCImago, I studied how network characteristics

of the collaboration network of internal scientists and external collaborators of a

city are associated with the city’s scientific impact and innovation. The approach

I proposed here to constructing collaboration networks can be adopted in future

work concerned with new network measures and their relationships with the
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scientific performance of cities.

In this work, I focused on three sets of measures: (i) the brokerage potential, a

new measure that builds on, and extends, Burt’s theory of structural holes (Burt,

2009); (ii) the proportion of strong ties, a measure inspired by Granovetter’s

theory of the strength of weak ties (Granovetter, 1973); and (iii) geographical

diversity, increasingly advocated as the new orthodoxy in city planning (Fainstein,

2005). Notice that my methodology allows me to define finer-grained internal

and external brokerage measures and the proportion of strong ties by drawing

attention separately to internal scientists and external collaborators of a city.

The main benefit of introducing internal and external measures is that one can

potentially offer complementary perspectives on structural sources of social capital.

This will help other researchers to consider finer-grained sources of social capital

in future research and obtain a deeper understanding of their (potentially distinct)

relationships with performance-based outcomes.

Findings based on the regression analysis contribute to the ongoing debate on

social capital and its foundations. First, results suggest that the same social

capital measure may have different associations with different performance-related

outcomes of a city. Specifically, I notice that external brokerage is significantly

and positively associated with scientific impact but is significantly and negatively

related to scientific innovation. This indicates that, while holding other variables

unchanged, an increase of a city’s external brokerage is expected to be associated

with a higher scientific impact but with lower scientific innovation. The proportion

of external strong ties is positively associated with scientific impact and negatively

related to scientific innovation. In addition, geographical diversity is negatively
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associated with scientific impact, but that is positively associated with scientific

innovation. Second, the internal and external measures may have distinct associa-

tions with the same performance-related outcome, suggesting that my proposed

finer-grained measures can capture different perspectives of network collaboration

patterns. Specifically, internal and external brokerage measures show distinct

relationships with scientific innovation. The proportions of internal and external

strong ties also have different associations with scientific innovation. This is in

agreement with the argument in the social sciences that simply considering only

the network structure while ignoring the properties of the actors may not provide

a comprehensive perspective on the structural foundations of social capital (Aral

and Van Alstyne, 2011; Fleming et al., 2007; Schilling and Fang, 2014; Shipilov

and Li, 2008; Ter Wal et al., 2016; Uzzi, 1996). Indeed my study suggests that

non-topological properties of the interacting nodes need to be taken into account.

For example, in scientific collaboration networks among scientists, the place of

residence (i.e., the city) of a scientist can be seen as the non-topological property

of the node.

Furthermore, my study can be seen as the first attempt to apply the concept of

interconnected geo-social network proposed in Ref. (Hristova et al., 2016) to spatial

networks in the community of research policy. This consists of two interconnected

network layers between people (social layer) and places (geographical layer).

On the one hand, the scientific collaboration network of scientists corresponds

to the social layer. On the other hand, the inter-city collaboration network I

constructed to compute a city’s betweenness centrality and closeness centrality

can be regarded as the geographical layer. For the geographical layer, instead
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of considering the collaboration between cities, other types of interactions could

be addressed in future work. For example, by drawing on scientists’ mobility

data (Edler et al., 2011; Scellato et al., 2015; Verginer and Riccaboni, 2020a,b),

the inter-city collaboration network can be constructed in which the cities are the

nodes and links between cities reflect the mobility flows between them. This will

open up new avenues for studying the association between scientific performance

and scientists’ inter-city mobility and collaboration.

4.5.2 Implications for practice

Apart from the theoretical implications of my findings, my study can also pro-

vide practical implications for scientists, policymakers, planning agencies and

governments.

On the one hand, I can assess the longitudinal rankings of cities over time in

terms of the different perspectives on social capital I proposed, which can allow

policymakers to carry out a comparative analysis of cities in the world. The

rankings can be used as partial guidance to inform scientists’ decisions about

when and where to move and can be used retrospectively to assess if research

policies have produced the desired effect in promoting a city as a prime research

location for policymakers. Moreover, the rankings of cities can allow scientists and

policymakers to study and predict the emergence and disappearance of scientific

hubs (cities or regions).

On the other hand, based on scientific collaboration networks, my analysis identifies

a number of factors associated with cities’ scientific impact and innovation. This
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can provide policymakers with insights on how to maintain or improve the scientific

performance of cities. First, policies need to focus not only on internal scientists

but also on external collaborators of cities. As I have shown, both types of

scientists and their interactions play essential roles in contributing to the scientific

performance of cities. Second, policymakers should pay attention to the interplay

among brokerage, strong ties, and geographical diversity. Proper strategies should

be made according to the comprehensive judgement of multiple proposed indicators

of the social capital of cities. Third, scientific impact and scientific innovation are

different perspectives of scientific performance. The same change in collaboration

patterns may lead to different or even opposite influences on these two kinds of

outcomes. Policymakers should make their objectives clear in terms of developing

the scientific performance of cities, e.g., by prioritising impact or encouraging

innovation.

4.5.3 Limitations

In what follows I will describe limitations concerned with my study, and then

outline how these might be overcome in future work. First, the main data set to

obtain scientific publications in my study is Medline, a bibliographic platform

focusing on life sciences and biomedical information. In my future study, I should

also consider other bibliographic platforms (e.g., Web of Science and Microsoft

Academic Graph (Sinha et al., 2015)) to include a range of disciplines beyond those

in Medline. For example, Microsoft Academic Graph contains 19 different scientific

fields, offering opportunities for us to uncover universal regularities across fields

as well as domain-specific patterns. Second, by focusing on bibliometric data, this
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study is limited to scientific collaboration concerned with publications without fully

capturing the collaboration between scientists beyond the publications, e.g., grants,

patents, or other research activities, which should be incorporated in future work.

Third, scientific impact and innovation are considered as measures of scientific

performance in my study. Other important measures that could capture scientific

performance (e.g., patents and funding) should also be included in the analysis

in future work. Fourth, demographic characteristics of scientists (e.g., gender,

age and ethnicity) should also be incorporated into future studies by drawing on

publicly available large-scale demographic data sets, such as Ref. (Ke et al., 2021).

Incorporating characteristics of scientists in future work can offer more insights

about the relationships between the proposed social capital measures and scientific

performance especially in studies where the unit of analysis is a scientist. Fifth,

while this study focuses on the city level, it would also be interesting to replicate

the study on the institution level, compare whether results are consistent, and

understand whether the institution level can offer finer-grained insights in future

work. The data used in the study does not allow me to focus on the institution

level because the granularity of geographical information about scientists is only

at the city level. Sixth, my study focuses on examining the relationships between

the proposed independent measures and dependent measures. It thus does not

provide causal interpretations of the relationship between them, and I have paid

careful attention to avoiding using any causal terms throughout the study.
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4.6 Contribution to the literature

Previous studies have used the inter-city scientific collaboration network to un-

derstand the relationship between the social capital of a city and its scientific

performance (Guan et al., 2015). Here in the inter-city collaboration network,

nodes are cities, and two cities are connected if scientists from two cities have

co-authored at least one paper. However, the inter-city collaboration network ag-

gregated from the individual scientist level lacks the actual collaboration patterns

of scientists within and across cities. In this chapter, my proposed geo-social net-

work approach (see Figure 4.1) that constructs collaboration networks of internal

scientists and external collaborators associated with a city can address the above

limitation and offers a methodological contribution to the studies concerned with

the interplay of networks, geography, and scientific performance.

To exemplify the applicability of the proposed approach, I applied it to large-scale

bibliometric data sets and quantified finer-grained measures to uncover the social

capital of a city extracted from the collaboration networks of its internal scientists

and external collaborators. I further studied how the finer-grained measures of

social capital of a city are associated with its scientific performance from two

distinct perspectives: impact and innovation. The relationship between finer-

grained measures of social capital and scientific performance has been examined.

Although I focused on cities as the unit of analysis in this chapter, the proposed

methodology can also contribute to other studies concerned with different levels

of analysis, including departments, institutions, and whole countries.
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Table 4.1: Calculation of the measures for London in Figure 4.1
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Table 4.2: Summary of main notations.

Notation Description
u, v Scientists.
i, j Cities.
t The focal year.
Tt The focal window Tt = [y, y + τ) where t is the focal year and τ is

the window size (years).
wS(u, v) The weight of the collaboration link of scientists u and v in Tt.
wL(i, j) The aggregated value of weights of collaboration links of scientists

resident in cities i and j, respectively. It is also the weight of the
collaboration link of cities i and j in the inter-city collaboration
network in Tt.

L(u) The resident city of scientist u in Tt.
Γ(i) Scientific impact of city i in Tt.
∆(i) Scientific innovation of city i in Tt.
G(i) The collaboration network of internal scientists and external col-

laborators of city i in Tt.
G in(i) The collaboration network of internal scientists of city i in Tt.
Gex(i) The collaboration network of external collaborators of city i in Tt.
NS(i) The set of internal scientists and external collaborators of city i

in Tt.
N in

S (i) The set of internal scientists of city i in Tt.
N ex

S (i) The set of external collaborators of city i in Tt.
|NS(i)| The total number of internal scientists and external collaborators

of city i in Tt.
|N in

S (i)| The number of internal scientists of city i in Tt.
|N ex

S (i)| The number of external scientists of city i in Tt.
NL(i) The set of resident cities of external collaborators of city i in Tt. It

is also the set of neighbours of city i in the inter-city collaboration
network in Tt.

BC(i) Betweenness centrality of city i in the inter-city collaboration
network Tt.

CC(i) Closeness centrality of city i in the inter-city collaboration network
Tt.

H(i) Centralisation of city i in in Tt.
Sin(i) Internal brokerage of city i in Tt.
Sex(i) External brokerage of city i in Tt.
Rin(i) Proportion of internal strong ties of city i in Tt.
Rex(i) Proportion of external strong ties of city i in Tt.
D(i) Geographical diversity of city i in Tt.



Part II: Deep learning



Chapter 5

Background

Part II of my thesis will be concerned with two projects on graph-based deep

learning and classification tasks. The idea of graph-based deep learning methods is

to learn low-dimensional representations of nodes from original high-dimensional

data features by incorporating both node features and graph structure that

describes relational information between nodes. This area of investigation is

somewhat conceptually related to my projects on social capital if we regard a

measure for extracting sources of social capital as a function to map a node’s

ego-centred network structure and/or network metadata (e.g., node attributes) to

a numeric value, i.e., a one-dimensional representation of a node. For example,

my proposed new brokerage measure in Chapter 3 quantifies an actor’s brokerage

opportunity (a numeric value) as a function of network patterns between nodes

and their attributes in this actor’s ego-centred network. In what follows, I shall

start with the background related to graph-based deep learning.

Deep learning encompasses a broad class of machine learning methods that
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use multiple layers of nonlinear processing units in order to learn multi-level

representations for detection or classification tasks (Bronstein et al., 2017; Deng

and Yu, 2014; Goodfellow et al., 2016; LeCun et al., 2015; Schmidhuber, 2015).

The main realisations of deep multi-layer architectures are the so-called Deep

Neural Networks (DNNs), which correspond to Artificial Neural Networks (ANNs)

with multiple layers between input and output layers. DNNs have been shown

to perform successfully in processing a variety of signals with an underlying

Euclidean or grid-like structure, such as speech, images, and videos. Signals

with an underlying Euclidean structure usually come in the form of multiple

arrays (LeCun et al., 2015) and are known for their statistical properties such as

locality, stationarity, and hierarchical compositionality from local statistics (Field,

1989; Simoncelli and Olshausen, 2001). For instance, an image can be seen as

a function on Euclidean space (the 2D plane) sampled from a grid. In this

setting, the locality is a consequence of local connections, stationarity results from

shift-invariance, and compositionality stems from the intrinsic multi-resolution

structure of many images (Bronstein et al., 2017). It has been suggested that such

statistical properties can be exploited by convolutional architectures via DNNs,

namely (deep) Convolutional Neural Networks (CNNs) (Bruna and Mallat, 2013;

LeCun et al., 1990, 1998) which are based on four main ideas: local connections,

shared weights, pooling, and multiple layers (LeCun et al., 2015). The role of the

convolutional layer in a typical CNN architecture is to detect local features from

the previous layer that are shared across the image domain, thus largely reducing

the parameters compared with traditional fully connected feed-forward ANNs.

Although deep learning models, and in particular CNNs, have achieved highly
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improved performance on data characterised by an underlying Euclidean structure,

many real-world data sets do not have a natural and direct connection with a

Euclidean space. Recently there has been interest in extending deep learning

techniques to non-Euclidean domains, such as graphs and manifolds (Bronstein

et al., 2017). An archetypal example is social networks, represented as graphs

with users as nodes and edges representing social ties between them. In biology,

gene regulatory networks represent relationships between genes encoding proteins

that can up- or down-regulate the expression of other genes. Here I review the

development of extending neural networks on graphs.

5.1 Early developments of neural networks on

graphs

The first attempt to generalise neural networks on graphs can be traced back

to Ref. (Gori et al., 2005), who proposed a scheme combining Recurrent Neural

Networks (RNNs) and random walk models. Their method requires the repeated

application of contraction maps as propagation functions until the node repre-

sentations reach a stable fixed point. This method, however, did not attract

much attention when it was proposed. With the current surge of interest in deep

learning, this work has been reappraised in a new and modern form: Ref. (Li et al.,

2016) introduced modern techniques for RNN training based on the original GNN

framework, whereas Ref. (Duvenaud et al., 2015) proposed a convolution-like prop-

agation rule on graphs and methods for graph-level classification. Non-spectral

methods have also been successfully proposed. For example, Ref. (Atwood and
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Towsley, 2016) shows how diffusion-based representations can be learned from

graph-structured data and used as the basis for node classification by introducing

a diffusion-convolution operation. Ref. (Niepert et al., 2016) converts graphs

locally into sequences fed into a conventional 1D CNN, which needs the definition

of a node ordering in a pre-processing step.

The first formulation of CNN on graphs (GCNNs) was proposed by Ref. (Bruna

et al., 2014). These researchers applied the definition of convolutions to the

spectral domain of the graph Laplacian, which is presented in Section 5.2.

5.2 Spectral graph convolutions

I now briefly present the key insights introduced by Ref. (Bruna et al., 2014) to

extend CNNs to the non-Euclidean domain. For an extensive recent review, the

reader should refer to Ref. (Bronstein et al., 2017).

In a data set, each sample is described by a C0-dimensional feature vector, which

is conveniently arranged into the feature matrix X ∈ RN×C0 . Each sample is also

associated with the node of a given graph G with N nodes, with edges representing

additional relational (symmetric) information. This undirected graph is described

by the adjacency matrix A ∈ RN×N . The ground truth assignment of each node

to one of F classes is encoded into a 0-1 membership matrix Y ∈ RN×F .

The main hurdle is the definition of a convolution operation on a graph between a

filter gθ and the node features X. In signal processing, a filter refers to a process

to remove some undesirable components or features from a signal. This can be
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achieved by expressing gθ onto a basis encoding information about the graph

with nodes vi ∈ V and edges (vi, vj) ∈ E, e.g., the adjacency matrix A or the

normalised Laplacian L = IN −D−1/2AD−1/2, where IN is the identity matrix and

D = diag(A1). This real symmetric matrix has an eigendecomposition L = UΛUT ,

where U is the matrix of column eigenvectors with associated eigenvalues collected

in the diagonal matrix Λ. The spectral convolutions on graphs are considered as

a multiplication between a signal x ∈ RN (a scalar for every node) and a filter

gw = diag(θ) parameterised by θ ∈ RN in the Fourier domain:

gθ ⋆ X = Ugθ(Λ)UT X, (5.1)

where UT X represents the graph Fourier transforms of signals X on nodes. gθ(Λ)

can be understood as a function of eigenvalues of L, filtering UT X in the frequency

domain. Finally, the signal is projected back onto the nodes by multiplying U on

the left.

While being theoretically salient, this method is unfortunately impractical due

to its computational complexity. Specifically, evaluating Equation (5.1) is com-

putationally inefficient because multiplication with the eigenvector matrix U is

O(N2). In addition, computing the eigendecomposition of L is also expensive for

large graphs. To address this problem, authors of Ref. (Hammond et al., 2011)

suggest that gθ(Λ) can be well-approximated by a truncated expansion according

to Chebyshev polynomials Tk(x) up to Kth order:

gθ′(Λ) ≈
K∑

k=0
θ′

kTk(Λ̃), (5.2)
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where Λ̃ = 2
λmax

Λ − IN . λmax represents the largest eigenvalue of L. θ′ ∈ RK is

a vector of Chebyshev coefficients. The Chebyshev polynomials are recursively

defined as Tk(x) = 2xTk−1(x) − Tk−2(x) where T0(x) = 1 and T1(x) = x. This can

be integrated into the definition of a convolution of a signal x with a filter gθ′ :

gθ′ ⋆ x ≈
K∑

k=0
θ′

kTk(L̃)x, (5.3)

with L̃ = 2
λmax

L − IN . It can be noticed that this expression is now K-localised

because it is a Kth, i.e., it depends only on nodes that are at maximum K

steps away from the central node. The computational complexity of considering

Equation (5.3) is O(|E|), i.e., linear in the number of edges. Ref. (Defferrard

et al., 2016) leveraged this K-localised convolution to define a convolutional neural

network on graphs. In Ref. (Kipf and Welling, 2017), a GCN architecture was

proposed via a first-order approximation of localised spectral filters on graphs,

i.e., K = 1 in Equation (5.3). In this linear formulation of a GCN, λmax is

approximated to be 2. Under these approximations, Equation (5.3) is further

simplified into:

gθ′ ⋆ x ≈ θ′
0x + θ′

1 (L − IN) x = θ′
0x − θ′

1D
− 1

2 AD− 1
2 x (5.4)

with two free parameters θ′
0 and θ′

1. The authors of Ref. (Kipf and Welling, 2017)

further constrain the number of parameters in Equation (5.4) and obtain the

following expression:
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gθ ⋆ x ≈ θ
(
IN + D− 1

2 AD− 1
2
)

x (5.5)

with a single parameter θ = θ′
0 = −θ′

1. It has been noticed that IN + D− 1
2 AD− 1

2

now has eigenvalues in the range [0, 2]. Repeated applications of this operator

might lead to numerical instabilities and exploding/vanishing gradients in deep

neural networks. To overcome this issue, the following renormalisation trick is

introduced: IN + D− 1
2 AD− 1

2 → D̃− 1
2 ÃD̃− 1

2 , where Ã = A + IN and D̃ii = ∑
j Ãij .

This definition can be generalised to a signal X ∈ RN×C0 and F filters as follows:

Z = D̃− 1
2 ÃD̃− 1

2 XΘ (5.6)

where Θ ∈ RC0×F is a matrix of filter parameters and Z ∈ RN×F is the convolved

signal matrix. This operation has complexity O(|E|FC) because ÃX can be

efficiently implemented as a product of a sparse matrix with a dense matrix.

The authors of Ref. (Kipf and Welling, 2017) considered the task of semi-supervised

transductive node classification, where labels are only available for a small number

of nodes. Starting with a feature matrix X and a network adjacency matrix A,

they encoded the graph structure directly using a neural network model f(X, A),

and trained on a supervised target loss function L computed over the subset of

nodes with known labels. Their proposed GCN was shown to achieve improved

accuracy in classification tasks on several benchmark citation networks and a

knowledge graph data set. The architecture and propagation rules of this method

based on Equation (5.6) are detailed in Section 5.3.
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5.3 Graph Convolutional Networks

5.3.1 Layer-wise propagation rule and multi-layer archi-

tecture

Given the matrix X with sample features and the (undirected) adjacency matrix

A of the graph G encoding relational information between the samples, the

propagation rule between layers ℓ and ℓ + 1 (of size Cℓ and Cℓ+1, respectively) is

given by:

Hℓ+1 = σℓ
(
ÂHℓW ℓ

)
, (5.7)

where Hℓ ∈ RN×Cℓ and Hℓ+1 ∈ RN×Cℓ+1 are matrices of activation in the ℓth

and (ℓ + 1)th layers, respectively; σℓ(·) is the threshold activation function for

layer ℓ; and the weights connecting layers ℓ and ℓ + 1 are stored in the matrix

W ℓ ∈ RCℓ×Cℓ+1 . Note that the input layer contains the feature matrix H0 ≡ X.

5.3.2 Semi-supervised node classification

In a semi-supervised learning setting, a small subset of the node ground truth

labels is used in the training phase to infer the class of unlabelled nodes. This

type of learning paradigm, where only a small amount of labelled data is combined

with a large amount of unlabelled data during training, lies between supervised

and unsupervised learning.

Node classification on a graph using a GCN can be seen as a label propagation

task: given a set of seed nodes with known labels, the task is to predict which
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label will be assigned to the unlabelled nodes given a certain topology and node

attributes.

Following (Kipf and Welling, 2017), I implement a two-layer GCN with propagation

rule (Equation (5.7)) and different activation functions for each layer, i.e., a

rectified linear unit for the first layer and a softmax unit for the output layer:

σ0 : ReLU(xi) = max(xi, 0) (5.8)

σ1 : softmax(x)i = exp(xi)∑
j exp(xj)

, (5.9)

where x is a vector. The model then takes the simple form:

Z = f(X, A) = softmax(Â ReLU(ÂXW 0) W 1), (5.10)

where the softmax function is applied row-wise, and the ReLU is applied element-

wise. Note that there is only one hidden layer with C1 units. Hence W 0 ∈ RC0×C1

maps the input with C0 features to the hidden layer and W 1 ∈ RC1×C2 maps

these hidden units to the output layer with C2 = F units, corresponding to the

number of classes of the ground truth.

In this semi-supervised multi-class classification, the cross-entropy error over all

labelled instances is evaluated as follows:

L = −
∑

l∈YL

F∑
f=1

Ylf ln Zlf , (5.11)

where YL is the set of nodes that have labels. The weights of the neural network

(W 0 and W 1) are trained using gradient descent to minimise the loss L. A visual
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Layer architecture{

Y ̂A Hl Wl Hl+1 Z

Training

!L

ℒ = − ∑
l∈!L

F

∑
f= 1

Ylf ln Zlf

Figure 5.1: Schematic illustration of the Graph Convolutional Network
used. The graph Â is applied to the input of each layer ℓ before it is funnelled into
the input of layer ℓ + 1. The process is repeated until the output has dimension
N × F and produces a predicted class assignment. During the training phase, the
predicted assignments are compared against a subset of values YL of the ground
truth.

summary of the GCN architecture is shown in Figure 5.1.



Chapter 6

Quantifying the alignment of

graph and features

6.1 Introduction

To address the challenge of extending deep learning techniques to graph-structured

data, a new class of deep learning algorithms, broadly named GNNs, has been

recently proposed (Bronstein et al., 2017; Hamilton et al., 2017; Xu et al., 2019).

In this setting, each node of the graph represents a sample described by a feature

vector, and I am additionally provided with relational information between the

samples that can be formalised as a graph. GNNs are well suited to node (i.e.,

sample) classification tasks. For a recent survey of this fast-growing field, see

Ref. (Wu et al., 2020).

Generalising convolutions to non-Euclidean domains is not straightforward (Deffer-

rard et al., 2016). Recently, GCN has been proposed (Kipf and Welling, 2017) as a
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subclass of GNNs with convolutional properties. The GCN architecture combines

the full relational information from the graph together with the node features

to accomplish the multi-class classification task, using the ground truth class

assignment of a small subset of nodes during the training phase. GCNs have shown

improved performance for semi-supervised classification of documents (described

by their text) into topic areas, outperforming methods that rely exclusively on

text information without the use of any citation information, e.g., MLP (Kipf and

Welling, 2017).

However, one would not expect such an improvement to be universal. In some

cases, the additional information provided by the graph (i.e., the edges) might not

be consistent with the similarities between the features of the nodes. In particular,

in the case of citation graphs, it is not always the case that documents cite other

documents that are similar in content. As I will show below with some illustrative

data sets, in those cases, the conflicting information provided by the graph means

that a graph-less MLP approach outperforms GCN. Here, I explore the relative

importance of the graph with respect to the features for classification purposes,

and propose a geometric measure based on subspace alignment to explain the

relative performance of GCN against different limiting cases.

My hypothesis is that a degree of alignment among the three layers of information

available (i.e., the features, the graph and the ground truth) is needed for GCN

to perform well and that any degradation in the information content leads to an

increased misalignment of the layers and worsened performance. I will first use

randomisation schemes to show that the systematic degradation of the information

contained in the graph and the features leads to a progressive worsening of GCN
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performance. Second, I propose a simple spectral alignment measure and show

that this measure correlates with the classification performance in a number of

data sets: (i) a constructive example built to illustrate my work; (ii) Cora, a

well-known citation network benchmark; (iii) AMiner, a newly constructed citation

network data set; and (iv) two subsets of Wikipedia: Wikipedia I, where GCN

outperforms MLP, and Wikipedia II, where instead MLP outperforms GCN.

6.2 Methods

6.2.1 Randomisation strategies

To test the hypothesis that a degree of alignment across information layers is

crucial for a good classification performance of GCN, I gradually randomise the

node features, the node connectivity, or both. For the randomisation to give a

meaningful notion of alignment, at least one ingredient needs to be kept constant.

Since I focus on the alignment of graph and features, I keep the ground truth

constant.

Randomisation of the graph

The edges of the graph are randomised by rewiring a percentage p
Â

of edge

stubs (i.e., “half-edges”) under the constraint that the degree distribution remains

unchanged. This randomisation strategy is described in Algorithm 1 which is

based on the configuration model (Newman, 2003). Once a randomised realisation

of the graph is produced, the corresponding Â is computed.
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Algorithm 1: Randomisation of the graph
Input: A graph G(V, E), where V is the set of nodes and E is the set of

edges, and a randomisation percentage 0 ≤ p
Â

≤ 100.
Output: A randomised graph Gp

Â
(V, E ′)

1.Choose a random subset of edges Er from E with |Er| =
⌊
|E| × p

Â
/100

⌋
,

and denote the unrandomised edges in E as Eu.
2. Obtain the degree sequence of nodes from Er, and build a stub list ls
based on the degree sequence.

3. Obtain a randomised stub list l′
s by shuffling ls, and randomised edges

E ′
r by connecting the stubs in the corresponding positions of the two stub

lists ls and l′
s.

4. Compute Eu ∪ E ′
r, remove multiedges and self-loops, and obtain the

final edge set E’.
5. Generate randomised graph Gp

Â
(V, E ′) from node set V and edge set

E ′.

Randomisation of the features

The features were randomised by swapping feature vectors between a percentage

pX of randomly chosen nodes following the procedure described in Algorithm 2.

Algorithm 2: Randomisation of the features
Input: A feature matrix X ∈ RN×C0 , and a randomisation percentage

0 ≤ pX ≤ 100.
Output: A randomised feature matrix XpX

∈ RN×C0

1. Choose at random Nr rows from X, where Nr = ⌊N pX/100⌋.
2. Swap randomly the Nr rows to obtain XpX

.

A fundamental difference between the two randomisation schemes is that the

graph randomisation alters its spectral properties as it gradually destroys the

graph structure, whereas the randomisation of the features preserves its spectral

properties in the principal component analysis (PCA) sense, i.e., the principal

values are the same, but the loadings on the components are swapped. Hence

the feature randomisation still alters the classification performance because the
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features are re-assigned to nodes that have a different environment, thereby

changing the result of the convolution operation defined by the Hℓ activation

matrices (Equation (5.7)).

6.2.2 Limiting cases

To interrogate the role that the graph plays in the classification performance of a

GCN, it is instructive to consider three limiting cases:

• No graph: A = 00T . If I remove all the edges in the graph, the classifier

becomes equivalent to an MLP, a classic feed-forward ANN. The classification

is based solely on the information contained in the features, as no graph

structure is present to guide the label propagation.

• Complete graph: A = 11T − IN . In this case, the mixing of features is

immediate and homogeneous, corresponding to a mean field approximation

of the information contained in the features.

• No features: X = IN . In this case, the label propagation and assignment

are purely based on graph topology.

An illustration of these limiting cases can be found in the top row of Table 6.2.

6.2.3 Spectral alignment measure

In order to quantify the alignment between the features, the graph, and the ground

truth, I propose a measure based on the chordal distance between subspaces, as

follows.
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Chordal distance between two subspaces

Recent work by Ref. (Ye and Lim, 2016) has shown that the distance between

two subspaces of different dimensions in Rn is necessarily defined in terms of their

principal angles.

Let A and B be two subspaces of the ambient space Rn with dimensions α and

β, respectively, with α ≤ β < n. The principal angles between A and B denoted

0 ≤ θ1 ≤ θ2 ≤ ... ≤ θα ≤ π
2 are defined recursively as follows (Björck and Golub,

1973; Golub and Van Loan, 2013):

θ1 = min
a1∈A,b1∈B

arccos
(

|aT
1 b1|

∥a1∥∥b1∥

)
,

θj = min
aj∈A,bj∈B

aj⊥a1,...,aj−1
bj⊥b1,...,bj−1

arccos
(

|aT
j bj|

∥aj∥∥bj∥

)
, j = 2, ..., α,

If the minimal principal angle is small, then the two subspaces are nearly linearly

dependent, i.e., almost perfectly aligned. A numerically stable algorithm that

computes the canonical correlations (i.e., the cosine of the principal angles) between

subspaces is given in Algorithm 3.

Algorithm 3: Principal angles (Björck and Golub, 1973; Golub and
Van Loan, 2013)

Input: matrices An×α and Bn×β with α ≤ β < n.
Output: cosines of the principal angles θ1 ≤ θ2 ≤ ... ≤ θα between R(A)

and R(B), the column spaces of A and B.
1. Find orthonormal bases QA and QB for A and B using the QR
decomposition: QT

AQA = QT
BQB = I; R(QA) = R(A), R(QB) = R(B).

2. Compute the singular value decomposition (SVD): QT
AQB = UCV T .

3. Extract the diagonal elements of C: Cii = cos θi, to obtain the
canonical correlations {cos θ1, ..., cos θα}.

The principal angles are the basic ingredient of a number of well-defined Grass-
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mannian distances between subspaces (Ye and Lim, 2016). Here I use the chordal

distance given by:

d(A, B) =
√√√√ α∑

j=1
sin2 θj. (6.1)

The larger the chordal distance d(A, B) is, the worse the alignment between the

subspaces A and B.

I remark that the last inequality in α ≤ β < n is strict. If a subspace spans the

whole ambient space (i.e., β = n), then its distance to all other strict subspaces of

Rn is trivially zero, as it is always possible to find a rotation that aligns the strict

subspace with the whole space.

Alignment metric

My task involves establishing the alignment between three subspaces associated

with the features X, the graph Â, and the ground truth Y . To do so, I consider

the distance matrix containing all the pairwise chordal distances:

D(X, Â, Y ) =



0 d(X, Â) d(X, Y )

d(X, Â) 0 d(Â, Y )

d(X, Y ) d(Â, Y ) 0


, (6.2)

and I take the Frobenius norm (Golub and Van Loan, 2013) of this matrix D as

my subspace alignment measure (SAM):

S(X, Â, Y ) = ∥D(X, Â, Y )∥F =
√√√√ 3∑

i=1

3∑
j=1

D2
ij. (6.3)
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The larger ∥D∥F is, the worse the alignment between the three subspaces. This

alignment measure has a geometric interpretation related to the area of the triangle

with sides d(X, Â), d(X, Y ), d(Â, Y ) (blue triangle in Figure 6.1).

Determining the dimension of the subspaces

The feature, graph, and ground truth matrices (X, Â, Y ) are associated with

subspaces of the ambient space RN , where N is the number of nodes (or samples).

These subspaces are spanned by: the eigenvectors of Â, the principal components

of the feature matrix X, and the principal components of the ground truth matrix

Y , respectively (Von Luxburg, 2007). The dimension of the graph subspace is

N ; the dimension of the feature subspace is the number of features C0 < N (in

my examples); and the dimension of the ground truth subspace is the number of

classes F < C0 < N .

The pairwise chordal distances Dij in Equation (6.2) are computed from a number

of minimal angles, corresponding to the smaller of the two dimensions of the

subspaces being compared. Hence the dimensions of the subspaces (kX , k
Â

, kY )

need to be defined to compute the distance matrix D. Here, I am interested

in finding low dimensional subspaces of features, graph and ground truth with

dimensions (k∗
X , k∗

Â
, k∗

Y ) such that they provide maximum discriminatory power

between the original problem and the fully randomised (null) model. To do this, I
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propose the following criterion:

k∗
Y = F (6.4)

(k∗
X , k∗

Â
) = arg max

kX ,k
Â

(
∥D(X100, Â100, Y )∥F − ∥D(X, Â, Y )∥F

)
.

I choose k∗
Y equal to the number of ground truth classes since they are non-

overlapping (Von Luxburg, 2007). My optimisation selects k∗
X and k∗

Â
such that

the difference in alignment between the original problem with no randomisation

(pX = p
Â

= 0) and an ensemble of 100 fully randomised (feature and graph,

pX = p
Â

= 100) problems is maximised (see SI for details on the optimisation

scheme). This criterion maximises the range of values that ||D||F can take, thus

augmenting the discriminatory power of the alignment measure when finding

the alignment between both data sources and the ground truth, beyond what is

expected purely at random. Importantly, the reduced dimension of features and

graph are found simultaneously since my objective is to quantify the alignment

(or amount of shared information) contained in the three subspaces. My criterion

effectively amounts to finding the dimensions of the subspaces that maximise a

difference in the surfaces of the blue and red triangles in Figure 6.1.

I provide the code to compute my proposed alignment measure at https://

github.com/haczqyf/gcn-data-alignment.

https://github.com/haczqyf/gcn-data-alignment
https://github.com/haczqyf/gcn-data-alignment
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Figure 6.1: Method to determine relevant subspaces (Equation (6.4)).
Using the constructive example, I illustrate the subspaces representing features,
graph and ground truth. The feature and ground truth matrices are decomposed
via PCA and the graph matrix is similarly eigendecomposed. Fixing k∗

Y = F ,
I optimise Equation (6.4) to find the dimensions k∗

X and k∗
Â

that maximise the
difference between the area of the blue triangle, which reflects the alignment of
the three subspaces (X, Â, Y ) of the original data, and the area of the red triangle,
which corresponds to the alignment of the subspaces (X100, Â100, Y ) of the fully
randomised data. The edges of the triangles correspond to the pairwise chordal
distances (e.g., the base of the blue triangle corresponds to d(X, Â)).
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6.3 Experiments

6.3.1 Data sets

Relevant statistics of the data sets, including number of nodes and edges, dimension

of feature vectors, and number of ground truth classes, are reported in Table 6.1.

Table 6.1: Some statistics of the data sets in my study.

Data sets Nodes (N) Edges Features (C0) Classes (F )
Constructive 1, 000 6, 541 500 10

Cora 2, 485 5, 069 1, 433 7
AMiner 2, 072 4, 299 500 7

Wikipedia 20, 525 215, 056 100 12
Wikipedia I 2, 414 8, 163 100 5
Wikipedia II 1, 858 8, 444 100 5

Constructive example

To illustrate the alignment measure in a controlled setting, I build a constructive

example, consisting of 1, 000 nodes assigned to 10 planted communities C1, ..., C10

of equal size. I then generate both a feature matrix and a graph matrix whose

structures are aligned with the ground truth assignment matrix. The graph

structure is generated using a stochastic block model that reproduces the ground

truth structure with some noise: two nodes are connected with a probability

pin = 0.07 if they belong to the same community Ci and pout = 0.007 otherwise.

The feature matrix is constructed in a similar way. The feature vectors are

500 dimensional and binary, i.e., a node either possesses a feature or does not.

Each ground truth cluster is associated with 50 features that are present with

a probability of pin = 0.07. Each node also has a probability pout = 0.007 of

possessing each feature characterising other clusters. Using the same stochastic
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block structure for both features and graph ensures that they are maximally

aligned with the ground truth. This constructive example is then randomised

in a controlled way to detect the loss of alignment and the impact this loss of

alignment has on the classification performance.

Cora

The Cora data set is a benchmark for classification algorithms using text and

citation data1. Each paper is labelled as belonging to one of 7 categories

(Case_Based, Genetic_Algorithms, Neural_Networks, Probabilistic_Methods,

Reinforcement_Learning, Rule_Learning, and Theory), which gives the ground

truth Y . The text of each paper is described by a 0/1 vector indicating the

absence/presence of words in a dictionary of 1, 433 unique words, the dimension

of the feature space. The feature matrix X is made from these word vectors. I

extracted the largest connected component of this citation graph (undirected) to

form the graph adjacency matrix A.

AMiner

For additional comparisons, I produced a new data set with similar character-

istics to Cora from the academic citation site AMiner. AMiner is a popular

scholarly social network service for research purposes only (Tang et al., 2008),

which provides an open database2 with more than 10 data sets encompassing

researchers, conferences, and publication data. Among these, the academic so-
1https://linqs.soe.ucsc.edu/data
2https://aminer.org/data
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cial network3 is the largest one and includes information on papers, citations,

authors, and scientific collaborations. In 2012 the Chinese Computer Federation

(CCF) released a catalogue including 10 subfields of computer science. Using the

AMiner academic social network, Ref. (Qian et al., 2017) extracted 102, 887 papers

published from 2010 to 2012, and mapped each paper with a unique subfield of

computer science according to the publication venue. Here, I use these assigned

categories as the ground truth for a classification task. Using all the papers in

Ref. (Qian et al., 2017) that have both abstract and references, I created a data

set of similar size to Cora. I extracted the largest connected component from

the citation network of all papers in 7 subfields (Computer systems/high perfor-

mance computing, Computer networks, Network/information security, Software

engineering/software/programming language, Databases/data mining/information

retrieval, Theoretical computer science, and Computer graphics/multimedia) from

2010 to 2011. The resulting AMiner citation network consists of 2, 072 papers

with 4, 299 edges. Just as with Cora, I treat the citations as undirected edges,

and obtain an adjacency matrix A. I further extracted the most frequent 500

stemmed terms from the corpus of abstracts of papers and constructed the feature

matrix X for AMiner using bag-of-words.

Wikipedia

As a contrasting example, I produced three data sets from the English Wikipedia.

The Wikipedia provides an interlinked corpus of documents (articles) in different

fields, which “cite” each other via hyperlinks. I first constructed a large corpus of
3https://aminer.org/aminernetwork
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articles, consisting of a mixture of popular and random pages so as to obtain a

balanced data set. I retrieved the 5, 000 most accessed articles during the week

before the construction of the data set (July 2017), and an additional 20, 000

documents at random using the Wikipedia built-in random function4. The text and

subcategories of each document, together with the names of documents connected

to it, were obtained using the Python library Wikipedia5. A few documents (e.g.,

those with no subcategories) were filtered out during this process. I constructed the

citation network of the documents retrieved and extracted the largest connected

component. The resulting citation network contained 20, 525 nodes and 215, 056

edges. The text content of each document was converted into a bag-of-words

representation based on the 100 most frequent words. To establish the ground

truth, I used 12 categories from the API (People, Geography, Culture, Society,

History, Nature, Sports, Technology, Health, Religion, Mathematics, Philosophy)

and assigned each document to one of them. As part of my investigation, I

split this large Wikipedia data set into two smaller subsets of non-overlapping

categories: Wikipedia I, consisting of Health, Mathematics, Nature, Sports, and

Technology; and Wikipedia II, with the categories Culture, Geography, History,

Society, and People.

All six data sets used here can be found at https://github.com/haczqyf/

gcn-data-alignment/tree/master/alignment/data.
4https://en.wikipedia.org/wiki/Wikipedia:Random
5https://github.com/goldsmith/Wikipedia

https://github.com/haczqyf/gcn-data-alignment/tree/master/alignment/data
https://github.com/haczqyf/gcn-data-alignment/tree/master/alignment/data
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6.3.2 GCN architecture, hyperparameters and implemen-

tation

I used the GCN architecture (Kipf and Welling, 2017) and implementation6

provided by the authors of (Kipf and Welling, 2017), and followed closely their

experimental setup to train and test the GCN on my data sets. I used a two-layer

GCN as described in Section 5.3 with the maximum number of training iterations

(epochs) set to 400 (Kingma and Ba, 2015), a learning rate of 0.01, and early

stopping with a window size of 100, i.e., training stops if the validation loss does

not decrease for 100 consecutive epochs. Other hyperparameters used were: (i)

dropout rate: 0.5; (ii) L2 regularisation: 5 × 10−4; and (iii) number of hidden

units: 16. I initialised the weights as described in Ref. (Glorot and Bengio, 2010),

and accordingly L1 row-normalised the input feature vectors. For the training,

validation and test of the GCN, I used the following split: (i) 5% of instances as

training set; (ii) 10% as validation set; and (iii) the remaining 85% as test set.

I used this split for all data sets with the exception of the full Wikipedia data

set, where I used: (i) 3.5% of instances as training set; (ii) 11.5% as validation

set; and (iii) the remaining 85% as the test set. This modification of the split

was necessary to ensure the instances in the training set were evenly distributed

across categories.
6https://github.com/tkipf/gcn
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6.4 Results

The GCN performance is evaluated using the standard classification accuracy

defined as the proportion of nodes correctly classified in the test set.

6.4.1 GCN: original graph vs. limiting cases

For each data set in Table 6.1, I trained and tested a GCN with the original graph

and features matrices, and GCN models under the three limiting cases described

in Section 6.2.2. I computed the average accuracy of 100 runs with random weight

initialisations (Table 6.2).

Table 6.2: Classification accuracy of GCN and limiting cases for my
data sets. The best performance is indicated in bold. Error bars are evaluated
over 100 runs. The GCN with original data performs best in most cases, but is
outperformed by MLP in the full Wikipedia data set and its subset Wikipedia II.

GCN (original) GCN (limiting cases)

No graph = MLP No features Complete graph
(Only features) (Only graph) (Mean field)

A = 00T X = IN A = 11T − IN

X A Y X A Y X A Y X A Y

Data sets
Constructive 0.932 ± 0.006 0.416 ± 0.010 0.764 ± 0.009 0.100 ± 0.003
Cora 0.811 ± 0.005 0.548 ± 0.014 0.691 ± 0.006 0.121 ± 0.066
AMiner 0.748 ± 0.005 0.547 ± 0.013 0.591 ± 0.006 0.123 ± 0.045
Wikipedia 0.392 ± 0.010 0.450 ± 0.007 0.254 ± 0.037 O.O.M.
Wikipedia I 0.861 ± 0.006 0.796 ± 0.005 0.824 ± 0.003 0.163 ± 0.135
Wikipedia II 0.566 ± 0.021 0.659 ± 0.011 0.347 ± 0.012 0.155 ± 0.176

The GCN using all the information available in the features and the graph

outperforms MLP (the no graph limit) except in the case of the large Wikipedia

set. Hence using the additional information contained in the graph does not

necessarily increase the performance of GCN. To investigate this issue further,

I split the Wikipedia data set into two subsets: Wikipedia I, with articles in
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topics that tend to be more self-referential (e.g., Mathematics or Technology)

and Wikipedia II, containing pages in areas that are less self-contained (e.g.,

Culture or Society). If adjacent nodes tend to belong to the same class (i.e., being

self-referential) in the citation graph, it can be understood that graph and ground

truth are well aligned. I observed that GCN outperforms MLP for Wikipedia I

but the opposite is still true for Wikipedia II. Finally, I also observe that the

performance of “No features” is always lower than the performance of GCN, and,

as expected, the performance of “Complete graph” (i.e., mean field) is very low

and close to pure chance (i.e., ∼ 1/F ).

6.4.2 Performance of GCN under randomisation

The results above lead us to pose the hypothesis that a degree of synergy between

features, graph and ground truth is needed for GCN to perform well. To investigate

this hypothesis, I use the randomisation schemes described in Section 6.2.1 to

degrade systematically the information content of the graph and/or the features

in my data sets. Figure 6.2 presents the performance of the GCN as a function of

the percent of randomisation of the graph structure, the features, or both. As

expected, the accuracy decreases for all data sets as the information contained in

the graph, features or both is scrambled, yet with differences in the decay rate of

each of the ingredients for the different examples.

Note that the chance-level performance of the “Complete graph” (mean field)

limiting case is achieved only when both graph and features are fully randomised,

whereas the accuracy of the two other limiting cases (‘No graph - MLP’, “No

features”) is reached around the half-point (∼ 50%) of randomisation of the
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graph or of the features, respectively. This indicates that using the scrambled

information above a certain degree of randomisation becomes more detrimental

to the classification performance than simply ignoring it.
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Figure 6.2: Degradation of classification performance as a function of
randomisation. Each panel shows the degradation of the classification accuracy
as a function of the randomisation of graph, features and both, for a different data
set. Error bars are evaluated over 100 realisations: for zero percent randomisation,
I report 100 runs with random weight initialisations; for the rest, I report 1 run
with random weight initialisations for 100 random realisations. The horizontal
lines correspond to the limiting cases in Table 6.2. The full Wikipedia data set
was not analysed here since the eigendecomposition of Â needed to obtain k∗

X , k∗
Â

is computationally intensive.

6.4.3 Relating GCN performance and subspace alignment

I tested whether the degradation of GCN performance is linked to the increased

misalignment of features, graph and ground truth given by the SAM:

S∗(X, Â, Y ) = ∥D(X, Â, Y ; k∗
X , k∗

Â
, k∗

Y )∥F (6.5)

which corresponds to Equation (6.3) computed with the dimensions (k∗
X , k∗

Â
, k∗

Y )

obtained using Equation (6.4) (Table 6.3, and see Section A.1 for the optimisation

scheme used). Figure 6.3 shows that the GCN accuracy is clearly (anti)correlated
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with the subspace alignment distance (Equation (6.5)) in all my examples (mean

correlation = −0.92). As I randomise the graph and/or features, the subspace

misalignment increases and the GCN performance decreases. In addition to

the Chordal distance, Ref. (Ye and Lim, 2016) studies other subspace distances.

While all the distances can be expressed in terms of the principal angles θj, some

rely on all the angles, whereas others only use the maximum principal angle. I

obtain similar results for distances that use all the principal angles (e.g., Chordal,

Grassmann), but I find that extremal distances based on the maximum principal

angle (e.g., the Projection distance) do not correlate as well with GCN performance.

This highlights the importance of the information captured by all principal angles

to quantify the alignment between subspaces. For results based on the Grassmann

and Projection distances, see Section A.3.

Table 6.3: Dimensions of the three subspaces obtained according to
Equation (6.4) for my data sets.

Data sets k∗
X k∗

Â
k∗

Y

Constructive example 287 10 10
Cora 1,291 190 7

AMiner 500 57 7
Wikipedia I 68 1,699 5
Wikipedia II 100 1,125 5

6.5 Discussion and conclusion

In this chapter, I have introduced SAM (Equation (6.5)), a measure that quantifies

the consistency between the feature and graph ingredients of data sets, and I

showed that it correlates well with the classification performance of GCNs. My

experiments show that a degree of alignment is needed for a GCN approach to be

beneficial and that using a GCN can actually be detrimental to the classification
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Figure 6.3: Classification performance versus the SAM. Each panel shows
the accuracy of GCN versus the SAM (Equation (6.5)) for all the runs presented
in Figure 6.2. Error bars are evaluated over 100 randomisations.

performance if the feature and graph subspaces associated with the data are not

constructively aligned (e.g., Wikipedia and Wikipedia II).

6.5.1 Implications for research

My first set of experiments (Table 6.2) reflects the varying amount of information

that GCN can extract from features, graph, and their combination, for the purpose

of classification. For a classifier to perform well, it is necessary to find (possibly

nonlinear) combinations of features that map differentially and distinctively onto

the categories of the ground truth. The larger the difference (or distance on the

projected space) between the samples of each category, the easier it is to “separate”

them, and the better the classifier. In the MLP setting, for instance, the weights

between layers (W ℓ) are trained to maximise this separation. As seen by the

different accuracies in the “No graph” column (Table 6.2), the features of each

example contain a variable amount of information that is mappable on its ground

truth. A similar reasoning applies to classification based on graph information
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alone, but in this case, it is the eigenvectors of Â that need to be combined to

produce distinguishing features between the categories in the ground truth (e.g., if

the graph substructures across scales (Lambiotte et al., 2014) do not map onto the

separation lines of the ground truth categories, then the classification performance

based on the graph will deteriorate). The accuracy in the “No features” column

indicates that some of the graphs contain more congruent information with the

ground truth than others. Therefore, the “No graph” and “No features” limiting

cases inform about the relative congruence of each type of information with respect

to the ground truth. One can then conjecture that if the performance of the “No

features” case is higher than the “No graph” case, GCN will yield better results

than MLP. These results suggest that in future work researchers should consider

limiting cases to understand the potential contribution of features and graph to

the classification performance of GCN.

In addition, my numerics show that although combining both sources of infor-

mation generally leads to improved classification performance (‘GCN original’

column in Table 6.2), this is not always necessarily the case. Indeed, for the

Wikipedia and Wikipedia II examples, the classification performance of the MLP

(‘No graph’), which is agnostic to relationships between samples, is better than

when the additional layer of relational information about the samples (i.e., the

graph) is incorporated via the GCN architecture. This suggests that, for improved

GCN classification, the information contained in features and graph needs to be

constructively aligned with the ground truth. This phenomenon can be intuitively

understood as follows. In the absence of a graph (i.e., the MLP setting), the

training of the layer weights is done independently over the samples, without
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assuming any relationship between them. In GCN, on the other hand, the role

of the graph is to guide the training of the weights by averaging the features of

a node with those of its graph neighbours. The underlying assumption is that

the relationships represented by the graph should be consistent with the infor-

mation of their features, i.e., the features of nodes that are graph neighbours are

expected to be more similar than otherwise; hence the training process is biased

towards convolving the diffusing information on the graph to extract improved

feature descriptions for the classifier. However, if feature similarities and graph

neighbourhoods (or more generally, graph communities (Lambiotte et al., 2014))

are not congruent, this graph-based averaging during the training is not beneficial.

These findings provide theoretical contributions to the design of proper GNN

frameworks that take the similarity of node features into account in the graph

convolution layers.

To explore this issue in a controlled fashion, my second set of experiments (Fig-

ure 6.2) studied the degradation of the classification performance induced by

the systematic randomisation of graph structure and/or features. The erosion of

information is not uniform across my examples, reflecting the relative salience

of each of the components (features and graph) for classification. Note that the

GCN is able to leverage the information present in any of the two components and

is only degraded to chance-level performance when both graph and features are

fully randomised. Interestingly, this fully randomised (chance-level) performance

coincides with that of the “Complete graph” (or mean field) limiting case, where

the classifier is trained on features averaged over all the samples, thus leading to

a uniform representation that has zero discriminating power when it comes to
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category assignment.

These results suggest that a degree of constructive alignment between the matrices

of features, graph, and ground truth (X, Â, Y ) is necessary for GCN to operate

successfully beyond standard classifiers. To capture this idea, I proposed a simple

SAM (Equation (6.5)) that uses the minimal principal angles to capture the

consistency of pairwise projections between subspaces. Figure 6.3 shows that SAM

correlates well with the classification performance and captures the monotonic

dependence remarkably, given that SAM is a simple linear measure being applied

to the outcome of a highly non-linear, optimised system. The results are consistent

for other versions of GCN. In particular, in Section A.2 I show that the alignment

measure correlates well with the performance of the recently proposed Simple

Graph Convolution (SGC) (Wu et al., 2019). This new simple measure offers new

perspectives to the currently highly debated problem (McCabe et al., 2021) of how

to measure the consistency or distance between different sources of information

(e.g., features or graph).

6.5.2 Implications for practice

The proposed alignment measure can be used to measure the consistency between

the graph, features, and ground truth and thus indicates the potential classification

performance of GCN. For example, I applied this measure to show why certain

graphs are good for classification when multiple graphs are given as candidates in

Chapter 7 (see Section 7.4.2).

The alignment measure can also be used to evaluate the relative importance
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of features and graph for classification without explicitly running the GCN, by

comparing the SAM under full randomisation of features against the SAM under

full randomisation of the graph. If S∗(X100, Â, Y ) > S∗(X, Â100, Y ), the features

play a more important role in GCN classification. Conversely, if S∗(X100, Â, Y ) <

S∗(X, Â100, Y ), the graph is more important in GCN classification.

More generally, the SAM has potentially a wide range of applications in the quan-

tification of data alignment, including, among others: quantifying the alignment of

different graphs associated with, or obtained from, particular data sets; evaluating

the quality of classifications found using unsupervised methods; and aiding in

choosing the classifier architecture that is computationally most advantageous for

a particular data set.

6.5.3 Limitations

My approach has a number of limitations that could be addressed in future work.

First, it contains two parameters (i.e., the dimensions of the subspaces, k∗
X and k∗

Â
)

which need to be tuned through a computational search. Second, the alignment is

not directly comparable across data sets since the subspace dimensions are adjusted

for each data set. To facilitate comparisons across data sets, normalised versions

of the alignment measure will be the object of future work. Third, the current

measure is not suitable for very large data sets as the eigendecomposition of large

matrices is computationally demanding. For very large data sets, approximations

(e.g., using the Lanczos algorithm to explore only leading eigenvectors) might be

necessary to optimise the subspace dimensions. While I have focused here on
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node classification, it would be interesting in future work to extend my measure

to other tasks such as graph classification, link prediction, and regression.

6.6 Contribution to the literature

My work is concerned with the conceptual understanding of GCN, a prominent

deep learning architecture in the research area of machine learning with graphs.

My study has supported the hypothesis that a certain degree of alignment among

the graph, feature, and ground truth is needed in order to make GCN perform well.

To measure the consistency between the data ingredients in GCN, I introduced a

SAM with spectral and geometric interpretations to quantify the alignment among

data ingredients and showcased that it correlates well with the performance of

GCN.

My findings are particularly timely given the increasing interest of the scientific

community in incorporating relational data into classification tasks. More generally,

SAM can be used to inform the choice and development of the most advantageous

architecture that takes into account the degree of alignment between ingredients

and is applicable to other situations where the alignment between data sets, or

between graphs, or between graphs and data needs to be computed.



Chapter 7

Geometric graphs from data to

aid classification

7.1 Introduction

Recently, work with GCNs (Kipf and Welling, 2017) has suggested that using a

graph of samples in conjunction with sample features can improve classification

performance when compared with traditional methods that use only features.

Computationally, the graph allows the definition of a convolution operation that

exchanges and aggregates the features of samples that are connected on the graph.

If the graph and the features align well with the underlying class structure as

suggested in Chapter 6 and in Ref. (Qian et al., 2021b), the graph convolution

operation homogenises features of neighbouring nodes. These neighbouring nodes

will tend to be more similar.

In many instances, extra relational information in the form of a graph is not
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readily available. However, the intuition that nodes that are close in feature space

tend to belong to the same class can still be exploited by constructing geometric

graphs directly from the data features, and in doing so, creating neighbourhoods

of similar samples. Such feature-derived graphs can then be used to aid and

potentially sharpen the classification.

Here, I explore the benefit of constructing geometric graphs from the features of

the samples and using them within a GCN for sample classification (Figure 7.1a).

Graph construction, or inference, is a problem encountered in many fields (New-

man, 2018a), from neuroimaging to genetics, and can be based on many different

types of heuristics, from simple thresholding (Zalesky et al., 2012) or statistically

significant group-level thresholding (Lord et al., 2012) to sophisticated regularisa-

tion schemes (Omranian et al., 2016). In general, the goal is to obtain graphs that

concisely preserve key properties of the original data set as sparsely as possible,

i.e., with a low density of edges.

In this work, I use several popular geometric graph constructions to extract graphs

from data and study how the classification performance depends on the graph

construction method and the edge density. I find that there is a range of relatively

low edge densities over which the constructed graphs improve the classification

performance. Among the construction methods, I show that the recently proposed

Continuous k-Nearest Neighbour (CkNN) (Berry and Sauer, 2019) performs best

for GCN classification.

To gain further intuition about the role played by the graph in improving classifi-

cation, I compute two simple measures: (i) the alignment of the convolution of

graph and features with the ground truth; and (ii) the ratio of class separation in
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the output activations of the GCN. I show that the optimised geometric graphs

increase the alignment and the class separation. Finally, I show that the graphs

can be made more efficient using spectral graph sparsification (Spielman and

Srivastava, 2011), which reduces the edge density of the optimised CkNN graphs

while improving further the classification performance.

7.2 Methods

7.2.1 Graph construction

Let Xi be the F -dimensional feature vector (L1-normalised) of the i-th sample of

a data set with N samples. The pairwise dissimilarity between samples i and j is

taken to be the Euclidean distance:

d(i, j) = ∥Xi − Xj∥2 . (7.1)

The distance matrix of all samples D ∈ RN×N where Dij = d(i, j) is then used

to construct unweighted and undirected graphs based on different heuristics. To

guarantee connectedness over the data set, I first construct the Minimum Spanning

Tree (MST). The MST is obtained from the Euclidean distance matrix D using

the Kruskal algorithm and contains the N − 1 edges that connect all the nodes

(samples) in the graph with a minimal sum of edge weights (distances). Once the

weighted MST is obtained, I ignore the edge weights, as is also done for all other

graphs in this chapter. Thus the resulting graphs are undirected and unweighted.

The 0-1 adjacency matrix of the MST is denoted by AMST. I then add edges to
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the MST based on two types of criteria: (i) local neighbourhoods or (ii) balancing

local and global distances.

Methods Based on Local Neighbourhoods: Nearest Neighbours

The objective of neighbourhood-based methods is to construct a sparse graph by

connecting two samples if they are local neighbours, as determined by d(i, j).

The simplest such algorithm is k-Nearest Neighbour (kNN). A kNN graph has

an edge between two samples i and j if one of them belongs to the k-nearest

neighbours of the other. The adjacency matrix AkNN ∈ RN×N of a kNN graph is

defined by:

AkNN
i,j =


1 if d(i, j) ≤ d(i, ik) or d(i, j) ≤ d(j, jk)

0 otherwise

(7.2)

where ik and jk represent the k-th nearest neighbours of samples i and j, respec-

tively.

Although widely used, kNN has limitations. Perhaps most importantly, kNN

graphs can have highly heterogeneous degree distributions and often contain hubs,

i.e., samples with a high number of connections, since kNN greedily connects

two samples as long as one of them belongs to the other’s k-nearest neighbours.

It has been suggested that the presence of hubs in kNN graphs is particularly

severe when the samples are high-dimensional (Radovanović et al., 2010). It

has been observed that hubs tend to deteriorate the classification accuracy of

semi-supervised learning (Ozaki et al., 2011).
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To overcome this limitation, the Mutual k-Nearest Neighbour (MkNN) algorithm,

a variant of kNN, was proposed (Ozaki et al., 2011). In an MkNN graph an edge

is established between samples i and j if each of them belongs to the other’s

k-nearest neighbours. The adjacency matrix AMkNN ∈ RN×N of the MkNN graph

is defined by:

AMkNN
i,j =


1 if d(i, j) ≤ d(i, ik) and d(i, j) ≤ d(j, jk)

0 otherwise

(7.3)

Note that the MkNN algorithm guarantees that the degrees of all samples are

bounded by k. Therefore, MkNN reduces the presence of hubs when k is adequately

small.

Another limitation of kNN is its lack of flexibility to provide a useful, stable

graph when the data is not uniformly sampled over the underlying space, which

is often the case in practice (Liu and Barahona, 2020). In such situations, it is

difficult to find a single value of k that can accommodate the disparate levels of

sampling density across the data since the kNN graph will connect samples with

very disparate levels of similarity depending on the region of the sample space

(i.e., in densely sampled regions, the graph only connects data points that are

very similar, whereas, in poorly sampled regions, the graph connects data samples

that can be quite dissimilar). This disparity biases the training of the GCN. The

non-uniformity of the data distribution thus makes it difficult to tune a unique

k parameter that is appropriate across the whole data set. If the value of k is

too small, the graph is dominated by local noise and fails to provide consistent

information to improve the GCN training. If the value of k is large, the resulting
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graph is over-connected and leads GCN to degraded accuracy, close to mean-field

classification. Hence, when the sampling is not homogeneous, standard kNN

graphs can be sub-optimal in capturing the underlying data structure with a view

to improved learning.

CkNN (Berry and Sauer, 2019) has recently been introduced to address this

limitation by allowing an adjusted local density. The adjacency matrix ACkNN ∈

RN×N associated with a CkNN graph is defined by:

ACkNN
i,j =


1 if d(i, j) < δ

√
d(i, ik)d(j, jk)

0 otherwise

(7.4)

where the parameter δ > 0 regulates the density of the graph. For a fixed k, the

larger δ is, the denser the CkNN graph becomes. Ref. (Berry and Sauer, 2019)

shows that the CkNN graph captures the geometric features of the data set with

the additional consistency that the unnormalised Laplacian of the CkNN graph

converges spectrally to the Laplace-Beltrami operator in the limit of large data.

In this work, I fix δ = 1 and vary k so that CkNN can be compared with kNN

and MkNN, as suggested in Ref. (Liu and Barahona, 2020).

All these three methods capture the geometry of local neighbourhoods, with global

connectivity guaranteed by the MST.
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Balancing Local and Global Distances: Relaxed Minimum Spanning

Tree

Alternatively, other graph constructions attempt to balance the local geometry

with a measure of global geometry extracted from the full data set. In recent

years, several algorithms have been introduced to explore global properties of the

data using the MST (Beguerisse-Díaz et al., 2013; Liu and Barahona, 2020). Here,

I focus on the Relaxed Minimum Spanning Tree (RMST) (Beguerisse-Díaz et al.,

2013), which considers the largest distance dmax
MST-path(i,j) encountered along the

unique MST-path between i and j. If dmax
MST-path(i,j) is substantially smaller than

d(i, j), RMST discards the direct link between i and j, recognising the multi-step

MST-path as a good model to capture the similarity between them. If, on the

other hand, d(i, j) is comparable to dmax
MST-path(i,j), the MST-path does not provide

a good model, and RMST adds the direct link between i and j. The adjacency

matrix ARMST ∈ RN×N associated with a RMST graph is defined by:

ARMST
i,j =


1 if d(i, j) < dmax

MST-path(i,j) + γ(d(i, ik) + d(j, jk))

0 otherwise

(7.5)

where γ ≥ 0 is the density parameter, and d(i, ik) and d(j, jk) approximate the

local distribution of samples around i and j, respectively, as the distance to their

k-th nearest neighbour (Zemel and Carreira-Perpiñán, 2005). Here, I fix k = 1

and vary γ to change the edge density, as in Ref. (Liu and Barahona, 2020).
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7.2.2 Spectral graph sparsification

The graph construction methods above can be thought of as graph densification,

in which the starting point is the MST over the N samples and an edge is added

between two samples i and j if the distance d(i, j) meets a defined criterion. Graph

sparsification operates in the opposite direction: starting from a given graph, the

goal is to obtain a sparser graph that approximates the original graph so that

it can be used, e.g., in numerical computations, without introducing too much

error. Sparsified graphs are more efficient for both numerical computation and

data storage (Spielman and Teng, 2011). Here, I focus on spectral graph sparsi-

fication (Spielman and Teng, 2011), and apply the seminal Spielman-Srivastava

sparsification algorithm (SSSA) proposed in Ref. (Spielman and Srivastava, 2011).

SSSA obtains a spectral approximation of the given graph that satisfies the

following criterion:

(1 − σ) xTLx ≤ xTL̃x ≤ (1 + σ) xTLx (7.6)

where x ∈ RN×1 is a node vector, and L and L̃ are the Laplacian matrices of the

original and sparsified graphs, respectively.
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7.3 Experiments

7.3.1 Data sets

I use seven data sets collected from various sources. I provide the data sets

at https://github.com/haczqyf/ggc/tree/master/ggc/data. The data set

statistics are summarised in Table 7.1.

1. I consider three data sets Constructive, Cora and AMiner as introduced in

Section 6.3.1.

2. Digits is a handwritten digits data set. Each sample is an 8x8 image of a

digit. This is one of the benchmark data sets for classification in Scikit-

learn (Pedregosa et al., 2011).

3. FMA: The original data set (Defferrard et al., 2017; Franceschi et al., 2019)

contains 140 audio features extracted from 7, 994 music tracks. I use this

data set to address the problem of genre classification. The original data

set in ref. (Franceschi et al., 2019) contains 8 genres. I randomly sample

2, 000 music tracks (250 for each genre) to produce my data set.

4. Cell: This is a data set of brain cell types from autism. The original

data set (Velmeshev et al., 2019) contains the gene expression values (log2

transformed 10x UMI counts from cellranger) of 104, 599 single cells from

brains of control individuals and of patients with autism, where each cell

(sample) is characterised by the expression level of 36, 501 genes (features).

The full data set contains cells from 17 cell types (categories). To produce

https://github.com/haczqyf/ggc/tree/master/ggc/data
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my data set, I randomly sample 2, 000 cells from 10 cell types (200 cells for

each type) and select as my features the expression level of the top 500 most

highly variable genes across the 2, 000 cells in my sample.

5. Segmentation: This is an image segmentation data set, which is provided

at UCI machine learning repository (Dua and Graff, 2017) at https://

archive.ics.uci.edu/ml/datasets/Image+Segmentation. Each sample

represents an image described by 19 high-level and man-crafted numeric-

valued attributes.

Table 7.1: Summary statistics of the data sets in my study.

Data sets Type Samples (N) Features (F ) Classes (C) Train/Validation/Test

Constructive Stochastic block model 1, 000 500 10 50/100/850

Cora Text (Bag-of-words) 2, 485 1, 433 7 119/253/2, 113

AMiner Text (Bag-of-words) 2, 072 500 7 98/212/1, 762

Digits Images (Grayscale pixels) 1, 797 64 10 80/189/1, 528

FMA (songs) Music track features 2, 000 140 8 96/204/1, 700

Brain cell types Single-cell transcriptomics 2, 000 500 10 100/200/1, 700

Segmentation Image features 2, 310 19 7 112/234/1, 964

7.3.2 Graph construction

I consider geometric graph constructions that fall broadly in two groups: (i) three

methods based on local neighbourhoods, i.e., kNN, MkNN and CkNN (Berry and

Sauer, 2019) graphs; and (ii) a method that balances local and global distances

measured on the MST, i.e., the RMST (Beguerisse-Díaz et al., 2013). In all cases,

I start from an MST to guarantee the resulting graph comprises a single connected

component, and I add edges based on the corresponding distance heuristics. In

https://archive.ics.uci.edu/ml/datasets/Image+Segmentation
https://archive.ics.uci.edu/ml/datasets/Image+Segmentation
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each construction, a parameter regulates the edge density of the graph: k in kNN,

MkNN, and CkNN, and γ in RMST.

For each data set and each graph construction, I find the edge density that

maximises the average GCN classification accuracy on the validation set by

sweeping over 50 values of the edge density, from sparse to dense. Note that this

is a hyperparameter optimisation process, rather than exact optimisation in the

mathematical sense. For each value of the density, I run the GCN classifier 10

times starting from random weight initialisations to compute the average accuracy.

Note that the two limiting cases are well characterised: the “no graph” limit

corresponds to the MLP; the “complete graph” limit is equivalent to the mean

field and leads to random class assignment (Qian et al., 2021b).

7.3.3 Graph sparsification

Sparse graphs are generally favoured over dense graphs, particularly for large data

sets, as they are more efficient for numerical computation and data storage. I in-

vestigate whether it is possible to sparsify the optimised geometric graphs obtained

above while preserving, or even improving, GCN classification performance. Moti-

vated by the key importance of spectral properties in graph partitioning (Delvenne

et al., 2010; Lambiotte et al., 2014), I apply the SSSA (Spielman and Srivastava,

2011) to my optimised CkNN graphs. The SSSA reduces the number of edges of

a graph while preserving the spectral content of the graph Laplacian given by

Equation (7.6).

I apply the SSSA to the optimised CkNN and select the sparsification that
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maximises the classification accuracy on the validation set. For each data set, I

obtain increasingly sparse versions of the optimised geometric graph computed

above by scanning over 50 values of the sparsity parameter σ between 1/N and 1.

At each value of σ, I run the GCN classifier 10 times starting from random weight

initialisations and compute the average accuracy over the validation set. I then

select the graph with the highest accuracy and maximum sparsity. If sparsification

does not improve performance on the test set, I report the unsparsified graph as

optimal (e.g., in Cora, Digits, and FMA in Figure 7.3b).

7.3.4 GCN architecture, hyperparameters and implemen-

tation

My study applies the two-layer GCN described in Section 5.3. I use the GCN

implementation provided by the authors of Ref. (Kipf and Welling, 2017), and

follow closely the experimental setup in Refs. (Kipf and Welling, 2017; Qian et al.,

2021b). I use a two-layer GCN with 2, 000 epochs (training iterations); learning

rate of 0.01; and early stopping with a window size of 200. Other hyperparameters

are: dropout rate: 0.5; L2 regularisation: 5 × 10−4; number of hidden units: 16.

The weights are initialised as described in Ref. (Glorot and Bengio, 2010), and

the input feature vectors are L1 row-normalised. I choose the same data set splits

as in Ref. (Qian et al., 2021b) with 5% of samples as training set, 10% of samples

as validation set, and the remaining 85% as test set (see Table 7.1). The samples

in the training set are evenly distributed across classes.
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7.3.5 Graph-less classification methods

For comparison, I consider four graph-less classification methods: (i) MLP, which is

equivalent to GCN with no graph (Kipf and Welling, 2017; Qian et al., 2021b); (ii)

kNN Classification (kNNC) based on the plurality vote of its k-nearest neighbours;

(iii) Support Vector Machine (SVM) with Radial Basis Function kernel; and (iv)

Random Forest (RF). I use the Scikit-learn (Pedregosa et al., 2011) implementation

for kNNC, SVM, and RF. For each method and each data set, I use the validation

set to optimise the following hyperparameters: number of neighbours (kNNC);

regularisation parameter (SVM); maximum depth (RF). All other hyperparameters

are set as default in Scikit-learn. I compare the graph-less methods against the

MLP = GCN (No graph) used as the reference baseline.

7.3.6 Data and code availability

I provide the data sets and code for geometric graph construction at https:

//github.com/haczqyf/ggc. The code for GCNs is provided by the authors

of (Kipf and Welling, 2017) at https://github.com/tkipf/gcn. The code for

kNNC, SVM, and RF can be found at https://scikit-learn.org/stable/ from

scikit-learn (Pedregosa et al., 2011). The code for SSSA is available at https://

epfl-lts2.github.io/gspbox-html/doc/utils/gsp_graph_sparsify.html from

Graph Signal Processing Toolbox (Perraudin et al., 2014).

https://github.com/haczqyf/ggc
https://github.com/haczqyf/ggc
https://github.com/tkipf/gcn
https://scikit-learn.org/stable/
https://epfl-lts2.github.io/gspbox-html/doc/utils/gsp_graph_sparsify.html
https://epfl-lts2.github.io/gspbox-html/doc/utils/gsp_graph_sparsify.html
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7.3.7 Algorithm complexity

For a graph G = (V , E) with N nodes vi ∈ V and |E| edges (vi, vj) ∈ E , the

time complexity for GCN, i.e., to evaluate Equation (9), is O(|E|FHC) (Kipf

and Welling, 2017), where |E| is the number of graph edges, F is the dimension

of the feature space, H is the number of units in the hidden layer and C is the

number of classes in the ground truth. Hence the computational complexity for

GCN is linear in the number of graph edges. For the geometric graph construc-

tion, a brute force approach to computing exactly a geometric graph (i.e., the

kNN-type graphs) has time complexity O(FN2). However, fast approximate kNN

graph algorithms were proposed to reduce this time complexity. I mention two

examples: (i) Ref. (Chen et al., 2009) proposes an algorithm with complexity

O(FN t) with 1 < t < 2, and (ii) Ref. (Andoni and Indyk, 2006) proposes an algo-

rithm that uses locality sensitive hashing, which has complexity O
(
FN1/c2+o(1)

)
where c = 1 + ϵ > 1. For a thorough list of approximate kNN algorithms, see

https://github.com/stephenleo/adventures-with-ann/. Regarding spectral spar-

sification, the algorithm is nearly linear with time complexity Õ(|E|) (Spielman

and Srivastava, 2011), where the Õ notation ignores logarithmic factors. Finally,

for the MST construction, I use the Kruskal algorithm implemented in Scipy with

time complexity O(|E|logN).

7.3.8 Run time and memory requirements

To give a sense of run times and memory requirements for my algorithm, I

summarise the numbers briefly for the Cora data set, which presents the worst-
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case run times and storage requirements among my seven examples. Indeed, I find

that Cora has the longest run times, consistent with the algorithmic complexity

introduced in Section 7.3.7, since Cora has the largest number of nodes and highest

dimensions. For graph construction, creating and storing in disk all the graphs

during the optimisation of the hyperparameter takes around 13 hours with a

maximum used memory of around 3G. However, my algorithm can be further

optimised since the graphs do not have to be stored and could be created and used

on the fly to save memory usage and access time. Furthermore, over-dense graphs

could be avoided altogether since the optimised graphs usually are relatively

sparse. Indeed, I find that the graphs with optimal accuracy have densities on the

order of 0.005 − 0.05 of the total number of possible edges (see Table B.2), and for

densities above ∼ 0.1 the accuracy drops below the accuracy of an MLP. For higher

densities, the accuracy consistently degrades towards the random assignment limit.

Therefore the grid search of the hyperparameter can be restricted to low-density

graphs, and dense graphs do not have to be stored or computed. The search for

the optimal hyperparameter can be further aided with a bisection scheme and

could be parallelised to improve the efficiency of the optimisation.

For each value of the hyperparameter, I run a GCN 10 times from 10 random

initialisations. The cost of each GCN is moderate: the complexity of GCN scales

nearly linearly with the number of edges of the graph. The cost of constructing

kNN-type graphs (originally of O(N2)) can also be reduced to nearly linear in

the number of nodes with approximation algorithms. Sparsification is also nearly

linear, as shown by Spielman. Hence the methodology has the potential to be

applied to relatively large graphs with further code optimisation. For instance,
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each GCN for Cora typically takes less than 7 minutes for relatively sparse graphs

(k ≤ 200), and each graph sparsification takes less than 2 minutes.

Comparing to the Louvain-based methods, there is the same complexity for the

kNN graph construction, whereas the run time complexity of Louvain optimisation

is O(N log2N). For Seurat, there is the additional cost of performing PCA to

extract the top T principal components, with complexity O(N2T ) (inherited from

randomised SVD). Thus, the run time complexity and memory requirements of

the Louvain-based methods are comparable to those of my method.

7.4 Results

7.4.1 Geometric graphs constructed from data features

can aid sample classification

Figure 7.1b shows the classification performance of a GCN with a CkNN graph

of increasing density applied to a data set of computer science papers (AMiner),

which I use as my running example throughout. I find that adding relatively

sparse graphs improves the classification accuracy, reaching a maximum increase of

10.9% at an edge density of 0.039 (k∗ = 199) on the validation set. Once the edge

density parameter is optimised on the validation set, I apply the GCN classifier

to the test set, and the test accuracy is recorded. In this case, the GCN yields

an improvement of 7.2% in classification accuracy on the test set with respect to

MLP, as reported in Table 7.2.

I have investigated six real-world data sets from different domains, ranging from
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text (AMiner (Qian et al., 2017; Tang et al., 2008), Cora (Sen et al., 2008)) to music

track features (FMA (Defferrard et al., 2017; Franceschi et al., 2019)) to single-cell

transcriptomics (Cell (Velmeshev et al., 2019)) to imaging (Digits (Pedregosa et al.,

2011), Segmentation (Dua and Graff, 2017)). I have also studied one constructive

data set with a well-defined ground truth based on a stochastic block model.

For a detailed description of the data sets, see Section 7.3.1. I have compared

the performance of four graph-less, feature-based classifiers (MLP, kNNC, SVM,

and RF) to GCN classifiers with optimised feature-derived geometric graphs

(Table 7.2). My numerical experiments indicate that the GCNs with feature-

derived graphs generally achieve better classification performance than graph-less

classifiers. In particular, the CkNN graph construction achieves the highest

accuracy improvement (+8.3% on average above MLP) across my seven data sets.

Table 7.2: Classification accuracy (in percent) on the test set (averaged over 10
runs with random initialisations) for 7 data sets with 8 classifiers (four graph-less
methods; GCN with four graph constructions). The standard deviation is reported
in Table B.1. The top two results for each data set are bold. Overall, GCN with
CkNN graphs displays the best performance. The density parameters of optimised
graphs are reported in Table B.2.

Classifier Constructive Cora AMiner Digits FMA Cell Segmentation Average improvement

MLP = GCN (No graph) 42.1 54.2 54.4 82.0 34.3 79.5 72.0 –
kNNC 31.4 38.2 28.0 88.3 30.6 58.7 68.8 (−10.6)
SVM 40.0 55.9 51.4 87.7 35.3 81.5 87.7 (+3.0)
RF 36.3 56.1 47.7 83.0 33.0 88.0 88.8 (+2.1)

GCN (kNN) 53.9 66.4 59.2 92.0 35.6 83.8 83.5 (+8.0)
GCN (MkNN) 45.2 64.1 61.8 93.2 35.6 84.0 83.0 (+6.9)
GCN (CkNN) 51.1 66.6 61.6 93.4 36.0 84.0 83.9 (+8.3)
GCN (RMST) 45.9 64.8 61.5 89.3 35.4 84.9 83.0 (+6.6)

7.4.2 The role of feature-derived graphs in classification

My results show improved classification performance of GCNs with feature-derived

geometric graphs of appropriate edge density. Indeed, over-sparse graphs perform

close to MLPs, the “no graph” limiting case, whereas over-dense graphs are
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Figure 7.1: Geometric graphs constructed from data features can aid
sample classification.
(a) Workflow for GCN classification using feature-derived graphs. (b) The valida-
tion set is used to search for graphs with optimised edge density—here illustrated
with the AMiner data set and CkNN graph construction. In red, the GCN classi-
fication accuracy on the validation set as a function of the density parameter, k.
The results are averaged over 10 runs with random weight initialisations; shaded
region represents standard deviation. As I sweep k from “no graph” (MLP) to
complete graph (mean field, random assignment), the classification accuracy on
the validation set exhibits a maximum for a CkNN graph with density parameter
k∗. In purple, edge density of the CkNN graphs as k is varied. Figures for all graph
constructions and data sets are provided in Figure B.1. Also shown below, graph
visualisations using the spring layout for over-sparse, optimised and over-dense
graphs, with nodes coloured according to their ground truth class.
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detrimental, as they approach the “mean field” limit that behaves like a random

class assignment. Hence there is a sweet spot of relatively low edge density where

graphs improve the performance maximally. To gather further insight into the

role of the constructed graphs in classification, I explore their properties from two

complementary perspectives.

Over-dense graphs degrade the alignment of graph-convolved features

with the ground truth

Consider the classification of N samples with F features into C classes making

use of a graph with adjacency matrix A. In Chapter 6 and Ref. (Qian et al.,

2021b) it was shown that good GCN performance requires a certain degree of

alignment between the linear subspaces associated with the matrix of features,

X ∈ RN×F , the adjacency matrix of the graph with self-loops, Â ∈ RN×N , and

the ground truth membership matrix, Y ∈ RN×C . Inspired by Chapter 6 and

Ref. (Qian et al., 2021b), I evaluate the alignment between the ground truth Y

and the graph-convolved features XA := ÂX as:

S(X, Â, Y ) = cos(θ1(XA, Y)). (7.7)

Here θ1(XA, Y) is the minimal principal angle (Björck and Golub, 1973; Golub

and Van Loan, 2013; Knyazev and Argentati, 2002) between the column spaces

of the matrices PCA(XA, p∗) and PCA(Y, p∗), which contain the top principal

components, as determined by the parameter p∗, of ÂX and Y , respectively.

The parameter p∗ is the ratio of explained variance that maximises the Pearson
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Figure 7.2: The role of feature-derived graphs in classification. (a) In green, I
show the alignment (Equation (7.7)) of CkNN graphs for the AMiner data set
as a function of the density parameter k. In red, classification accuracy as in
Figure 7.1b. The drop in classification accuracy corresponds to the drop in the
subspace alignment. Results for all graph constructions and data sets are given
in Figure B.2. (b) Ratio of class separation (Equation (7.8)) computed from
the output activations of the GCN with CkNN graphs for AMiner data set as a
function of the density parameter k, in brown. The results are averaged over 10
runs with random weight initialisations; shaded region is the standard deviation.
The brown dashed line represents the RCS for the MLP, i.e., GCN with no graph.
In red, classification accuracy, as in Figure 7.1b. Below, I show two-dimensional
t-SNE projections of the output activations of GCNs with no graph, optimised
graph and over-dense graph. The nodes are coloured according to the ground
truth class labels. The optimised graph induces higher class separability, as shown
by an increased RCS and better resolved t-SNE projection. Results for all graph
constructions and data sets are provided in Figure B.3.
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correlation between the alignment (Equation (7.7)) and the classification accuracy

on the validation set.

Figure 7.2a shows the alignment (Equation (7.7)) between the ground truth and

the graph-convolved data for CkNN graphs of increasing density on the AMiner

data set. I find that the reduction in classification accuracy induced by over-dense

graphs is linked to a strong disruption of the subspace alignment S
(
X, Â, Y

)
. In

the limit of the complete graph, the alignment approaches the value of 0, i.e., the

minimal angle θ1 = π/2, indicating that the two subspaces are orthogonal. On

the other hand, Sparse graphs induce a slight increase of the subspace alignment

at the same time as improving the classification accuracy. The alignment and

classification accuracy show a good correlation for the AMiner data set: the

Pearson correlation between alignment and accuracy (validation set) is 0.970,

obtained for a value of p∗ = 0.4. The same procedure has been carried out for

all seven data sets, and the results are presented in Figure B.2. The Pearson

correlation coefficient between alignment and accuracy (validation set) ranges

from 0.602 (Segmentation) to 0.970 (AMiner) with an average of 0.852 over all

7 data sets, thus indicating a good correspondence between the classification

accuracy and the graph-induced alignment of data and ground truth.

Graphs with optimised density increase the ratio of class separation

Another way of assessing the effect of the constructed graphs on classification is to

study the inherent separability of the probabilistic GCN assignment matrix, i.e.,

the row-stochastic matrix Z ∈ RN×C of output activations in Equation (5.10). The

effect of the graph on Z reflects the quality of the classifier: a good graph should
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enhance the separation of samples from different classes while clustering together

samples from the same class in C-dimensional space. I quantify the separability

of the GCN mapping using Z ′ ∈ RN×2, the two-dimensional t-SNE (Maaten and

Hinton, 2008) embedding of Z, on which I compute the ratio between the average

inter-class and intra-class distances, denoted ratio of class separation (RCS):

RCS = (1T (D(Z′) ◦ M inter)1)/(1T M inter1)
(1T (D(Z′) ◦ M intra) 1)/(1T M intra1) . (7.8)

Here, D(Z′) is the Euclidean distance matrix for the t-SNE embedding Z ′, i.e.,

D
(Z′)
ij =

∥∥∥Z ′
i − Z ′

j

∥∥∥
2
; the notation ◦ represents the Hadamard, element-wise, matrix

product; M inter ∈ RN×N is the inter-class indicator matrix, i.e., M inter
ij = 1

if samples i and j belong to different classes and M inter
ij = 0 otherwise; and,

conversely, M intra ∈ RN×N is the intra-class indicator matrix. Compactly, I have

M inter = 11T − Y Y T

M intra = Y Y T − IN ,

where IN ∈ RN×N is the identity matrix and 1 is the N -dimensional vector of

ones.

Figure 7.2b shows the RCS (Equation (7.8)) computed from the output activation

of GCNs with CkNN graphs of increasing density (AMiner data set). I observe

a high correlation between RCS and the classification accuracy (validation set):

the Pearson correlation coefficient for AMiner is 0.953. Similar figures for all

data sets are shown in Figure B.3. The Pearson correlation coefficient between

RCS and accuracy (validation set) is high for all data sets, ranging from 0.876
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(Segmentation) to 0.976 (Cora), with an average Pearson correlation coefficient

of 0.938 across all 7 data sets. These results indicate that sparse graphs unfold

the data and facilitate class separation, as illustrated by the t-SNE plots and

the increased RCS; on the other hand, over-dense graphs reduce separability and

eventually converge to the mean field limiting value of RCS = 1, i.e., when there

is no distinction between inter- and intra-class separation.

7.4.3 Spectral sparsification of optimised geometric graphs

can further improve classification

Figure 7.3a shows that for the AMiner data set, it is possible to improve the

classification accuracy using sparser graphs obtained with SSSA. This procedure

was repeated for all seven data sets (see Figure B.4). For several of my data

sets, the sparsified graphs perform better on the test data with reduced edge

density (see Table 7.3b). The results of the sparsification are robust: starting the

sparsification from three different highly-optimised CkNN graphs leads to similar

results (see Figure B.4 and Table B.3). Furthermore, the sparsification induces

increased alignment and RCS, which correlates with the improved classification

accuracy on the validation set (see Figures B.5 and B.6).

7.5 Discussion and conclusion

Supervised classification assigns unseen samples to classes based on their features

by learning from examples with known class labels. I show that classification can
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Optimised CkNN Sparsification of optimised CkNN

Data set ⟨Degree⟩ Accuracy (Test) ⟨Degree⟩ Accuracy (Test)
Constructive 9.2 51.1 6.3 51.6

Cora 36.7 66.6 36.7 66.6
AMiner 79.8 61.6 38.1 62.5
Digits 28.1 93.4 28.1 93.4
FMA 8.0 36.0 8.0 36.0
Cell 15.0 84.0 4.8 85.0

Segmentation 10.3 83.9 8.2 84.0
Average improvement (+8.3) (+8.7)

Figure 7.3: Spectral sparsification of optimised geometric graphs can further
improve classification. (a) In red, the same data as in Figure 7.1b, i.e., classification
accuracy of GCN with CkNN graphs on AMiner data set for increasing edge
density; 10 runs with random weight initialisations, shaded area is standard
deviation. The large red dot indicates the optimised graph found as edges are
added (densification). Starting from this optimised graph, I reduce the number of
edges using the SSSA (sparsification) and record the classification accuracy on
the validation set, in blue; 10 runs with random weight initialisations, shaded
region is standard deviation. The large blue dot indicates the optimised sparsified
graph. The grey dashed line corresponds to the classification accuracy of the
MLP (no graph) on the validation set. Results for all data sets are provided in
Figure B.4. (b) Comparison of optimised graphs obtained through the densification
and sparsification processes. The average degree of the graph (⟨Degree⟩) and
classification accuracy in percent on the test set are reported; averaged over
10 runs with random weight initialisations. Overall, sparsified graphs exhibit
improved accuracy on the test set with lower edge density.
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be improved by using the sample features not only as the basis for classification,

but also as a means to construct geometric graphs that encapsulate the closeness

between samples. Such feature-derived graphs can be used within graph-based

deep-learning models to improve the classification. To understand the benefits of

these graphs, I show that they align the data to the class labels and enhance class

separability. I also demonstrate how to make the graphs sparser and hence more

efficient while still potentially improving their performance.

7.5.1 Implications for research

My empirical study used data sets from different domains to show that sparse

geometric graphs constructed from data features can aid classification tasks when

used within the framework of GNNs. It is worth noting that although here I have

used the widely popular GCN framework to perform the classification task, other

advanced GNN architectures (e.g., Deep Graph Infomax (Veličković et al., 2019))

could be incorporated in my pipeline as an alternative to GCN for this purpose. In

my numerics, GCN with CkNN geometric graphs display the largest improvement

in classification accuracy (Table 7.2). This result is in line with recent work

on geometric graph construction for data clustering (Liu and Barahona, 2020),

which showed improved behaviour of CkNN over other neighbourhood methods,

such as kNN. CkNN graphs have been recently proposed as a consistent discrete

approximation of the Laplace-Beltrami operator governing the diffusion on an

underlying manifold (Berry and Sauer, 2019). Since GCN uses the graph to guide

the diffusion of features to neighbouring nodes, this offers a natural explanation

for the good performance of CkNN under the GCN framework. RMST graphs
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use a criterion that balances neighbourhood distances with non-local distances in

the data set within my graph construction methods. While RMST outperforms

graph-less methods, it does not outperform neighbourhood-based methods in the

examples considered here. However, RMST graphs could be appropriate for data

sets where similarities based on longer paths are important. For other researchers

in future work, these observations will provide guidance on how to select the most

appropriate graph construction methods for aiding classification.

Intuitively, geometric graphs capture the closeness (i.e., similarity) between samples

in feature space and can thus be helpful to learn and channel class labels from

known samples to similar unseen samples. To gain further insight into why

geometric graphs can improve GCN classification performance, I showed that the

graph induces an increased alignment of features and ground truth, as measured

by the simple measure (Equation (7.7)). The alignment correlates well with

classification performance, specifically capturing the deleterious effect that over-

dense graphs have on classification performance (Figure 7.2a). When the graphs

are over-dense, they lead to a “mean field” averaging over the whole data set, which

breaks the alignment—an analogous problem to the over-smoothing observed when

there are too many layers in GCNs (Chen et al., 2020; Li et al., 2018a). I also

showed that graphs with appropriate density induce increased class separability,

as measured by the ratio of class separation (RCS, Equation (7.8)) derived from

the GCN output activations, whereas over-sparse and over-dense graphs lead to

lower class separability (Figure 7.2b). These two simple measures (i.e., alignment

and RCS) contribute to the current debate on how to explain the functionality of

GNNs (Ying et al., 2019). Deviating from strictly geometric graphs, I demonstrated
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that spectral sparsification (SSSA) applied to the optimised CkNN graphs can

be used to reduce the number of edges whilst still improving the classification

performance (Figure 7.3). My choice of a spectral criterion for sparsification stems

from the fact that the preserved Laplacian quadratic form (Equation (7.6)) is

strongly related to graph partitioning and community detection (Delvenne et al.,

2010; Lambiotte et al., 2014). The resulting efficient graphs are thus the product

of a mixed process: a geometric graph provides a local similarity neighbourhood

which is further sharpened using global graph properties captured by the Laplacian

spectrum. Researchers can benefit from these findings by incorporating graph

sparsification algorithms to design more efficient GNN architectures.

Methods that leverage graphs in data analysis have a long history (Lauritzen,

1996), and have been recently considered in conjunction with deep learning

algorithms. Ref. (Franceschi et al., 2019) proposed a novel method that jointly

learns graph structure and the parameters of a GNN by solving a bilevel program

to obtain a discrete probability distribution on the edges of the graph. I have

compared my method with the one proposed in Ref. (Franceschi et al., 2019).

My results are summarised in Table B.4 and indicate that my proposed method

achieves, on average, classification accuracy comparable to Ref. (Franceschi et al.,

2019), yet with a significantly smaller number of parameters, thus simplifying the

training and reducing the inclination to overfitting. Table B.4 also includes the

results (Qian et al., 2021b) obtained by applying GCN to data sets that contain

a graph as an additional source of information (i.e., the citation networks for

Cora and AMiner). The improved accuracy of GCN with these original graphs

stems from the additional information the graphs contain beyond what is present
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in the features alone. Specifically, the original graphs for Cora and AMiner

collate citations between scientific articles, which encode additional information

about the similarity between articles not captured by the features (i.e., the text

embedding vectors) of the articles themselves. Another recent method constructed

a local neighbourhood graph as part of convolution-based classifiers (Wang et al.,

2019b). My work also contributes to this ongoing debate on how to leverage GCN

when graphs are not available. In contrast to the above related works, I focused

on graph-theoretical measures (Liu and Barahona, 2020), by exploring different

graph constructions and the importance of edge density and spectral content for

classification and characterising the effect of graphs through geometric notions of

separability and subspace alignment (Qian et al., 2021b).

7.5.2 Implications for practice

In my numerical experiments, feature-derived geometric graphs appear to be most

useful when the data is high-dimensional, noisy, and co-linearity is present in the

features. In particular, GCN with optimised graphs outperforms the graph-less

methods in all my data sets except “Segmentation”. All my data sets are high-

dimensional without feature engineering except “Segmentation”, a data set with

19 engineered features specifically optimised for classification—this is the set-up

where SVM and RF are expected to work well. However, even in that case, I note

that the featured-derived graphs still improve the classification performance with

respect to MLP, indicating that the graphs help filter out feature similarities that

can obscure the action of MLP.

Beyond the potential to improve performance, using graphs to aid classifica-
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tion changes the paradigm from supervised to semi-supervised learning. Su-

pervised methods, e.g., MLP, perform inductive learning, whereas graph-based

semi-supervised learning can be either transductive or inductive. GCNs belong to

transductive learning, since the graph of the full data set is used for the training.

Therefore, whilst potentially advantageous, the use of GCNs can also restrict the

generalisability to new samples. In many applications, such a requirement does

not impose severe restrictions, but graph-based methods can still be adapted to

classify new data without the need to recompute the model. For instance, one

could predict the class label of a new sample directly from the output activations

Z of the closest samples in the original set, or using more elaborate diffusion-based

schemes (Peach et al., 2020).

My proposed pipeline also shares common ground with some of the most successful

clustering methods developed for single-cell genomics data sets. For example,

Seurat (Satija et al., 2015) uses Louvain modularity (Blondel et al., 2008) op-

timisation to perform community detection on a kNN graph constructed from

the top principal components of data. Similarly, other methods for graph-based

clustering have been introduced using multiscale extensions of the Louvain algo-

rithm in the framework of Markov Stability (Liu and Barahona, 2020). Although

classification and clustering are different learning tasks, I have carried out a

comparison between my proposed method (CkNN+GCN) and two Louvain-based

clustering methods (Seurat and a straightforward kNN+Louvain clustering). After

optimising each method using the training and validation sets, I computed the

assignment it produces on the test set and compared it to the ground truth classes

(see Section B.1). The quality of the assignments (evaluated with the Adjusted
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Rand Index and Normalised Mutual Information) presented in Table B.5 indicates

that, on average, across my data sets, my proposed method performs better than

Seurat’s approach, and this could facilitate applications in related fields such as

computational biology.

7.5.3 Limitations

There are some dimensions of choices of algorithms in this chapter that could be

further explored. Here I explored graph construction based on geometry; it will

be interesting to consider graph construction paradigms that incorporate other

criteria, e.g., small-worlds (Watts and Strogatz, 1998), graph expanders (Hoory

et al., 2006), or entangled networks (Donetti et al., 2005), among others. Similarly,

although I showed that spectral sparsification (Spielman and Teng, 2011) is a

good choice to improve efficiency, other graph sparsification paradigms, e.g., cut

sparsification (Fung et al., 2019), might also be helpful to achieve efficient graphs

for classification. Here I have adopted the Euclidean distance as a simple metric

to base my geometric graph construction. However, other metrics could be used

in my pipeline and could be indeed more appropriate for different types of data.

Investigating the effect of different distance metrics (such as the Manhattan

distance, cosine similarity, or distances in transformed spaces such as PCA,

diffusion map, or other projections) would be an important question for future

research. While I have focused here on the same hyperparameters of GCN as (Kipf

and Welling, 2017), in future work it will be interesting to investigate whether

different geometric graphs require different sets of hyperparameters to achieve the

best performance.
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7.6 Contribution to the literature

In this chapter, I studied the following research question: can we leverage GCN

when no graphs exist explicitly in empirical domains? To this end, I systematically

explored how feature-derived graphs, constructed and optimised in a simple and

problem-agnostic manner, can be used with GCNs to improve classification per-

formance on data sets where graphs are not originally available. This allows us to

leverage recent graph-based deep-learning algorithms and extend the applicability

of GNNs to feature-only data sets.

More specifically, I highlighted that: (i) Geometric graphs from data can be used

in deep learning to improve classification; (ii) Optimised graphs align the data

to the class labels and enhance class separability; (iii) Sparsifying the optimised

graph can potentially improve classification performance; and (iv) Extensive

experiments are performed on data sets from various scientific domains. My

findings are particularly timely given the increasing interest within the machine

learning community, and especially among scholars working on GNN, in combining

graphs with classification and learning tasks.



Chapter 8

Conclusion

8.1 Brief overview

In the last two decades, networks have played an increasingly important role in

multiple scientific domains, ranging from the social sciences to physics to computer

science. In this thesis, I mainly focus on three types of networks–citation networks,

social networks, and collaboration networks–by combining theories and methods

from network science, sociology, machine learning, and data science. Specifically,

I presented four projects concerned with two research clusters: social capital and

deep learning. At a first glance, the two research clusters may seem to be only

loosely connected, but in fact they can be unified by the underpinning idea that

incorporating both graph structure and non-topological node features can provide

more powerful representations of nodes than in cases where only one of them is

leveraged.

The first project was presented in Chapter 3. Social capital extracted from
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network structures has long been seen as playing an important role in maintaining

or hindering a wide range of performance-related outcomes at the individual and

group levels. However, recent studies of social capital in networked communities

have suggested that the network topology in itself is not sufficient in explaining how

individuals, groups, and organisations can benefit from social interaction. Non-

topological features at the node level need to be accounted for to better understand

the performance implications of structure. To address this limitation, I developed

new measures of network effective size, i.e., intra- and inter-brokerage, based on

a certain non-topological property of nodes in directed and weighted networks,

which can provide more fine-grained perspectives on social capital. I further

obtained the corresponding simplified versions for undirected and unweighted

networks, and derived the relationship between these two measures and the intra-

and inter-local clustering coefficients. A case study on a co-authorship network

showed that the new measures – intra- and inter-brokerage – can indeed capture

distinct brokerage opportunities that would otherwise remain hidden by using

standard brokerage measures.

The second project was presented in Chapter 4. This study aimed to explore

the social capital of cities extracted from the collaboration patterns of their

resident scientists and their external collaborators. To this end, by combining

four large-scale bibliometric data sets, I started by constructing the scientific

collaboration networks of city-identified scientists using 17 time windows over

the period 1990 − 2006. I then quantified source of social capital (brokerage,

strong ties, and diversity) and scientific performance (impact and innovation) of

cities based on the collaboration network patterns of resident scientists and their
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external collaborators. This resulted in a panel data set containing 641 cities

grouped into 64 countries. In the empirical regression analysis, I used three-level

hierarchical random-intercept models. Results suggested that the relationship

between the (internal or external) brokerage and scientific performance of cities is

moderated by internal or external strong ties and the cities’ geographical diversity.

The third project was presented in Chapter 6. I showed that the classification

performance of GCNs is related to the alignment between features, graph, and

ground truth, which I quantified using a subspace alignment measure corresponding

to the Frobenius norm of the matrix of pairwise chordal distances between three

subspaces associated with features, graph, and ground truth. The proposed

measure is based on the principal angles between subspaces and has both spectral

and geometrical interpretations. I showcased the relationship between the SAM

and the classification performance through the study of limiting cases of GCNs

and systematic randomisations of both features and graph structure applied to a

constructive example and several examples of citation networks of different origins.

The analysis also revealed the relative importance of the graph and features for

classification purposes.

The fourth project was presented in Chapter 7. Traditional classification tasks

learn to assign samples to given classes based solely on sample features. This

paradigm is evolving to include other sources of information, such as known

relations between samples. Here I showed that, even if additional relational

information is not available in the data set, one can improve classification by

constructing geometric graphs from the features themselves and using them within

a Graph Convolutional Network. The improvement in classification accuracy
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is maximised by graphs that capture sample similarity with relatively low edge

density. I showed that such feature-derived graphs increase the alignment of the

data to the ground truth while improving class separation. I also demonstrated

that the graphs can be made more efficient using spectral sparsification, which

reduces the number of edges while still improving classification performance. I

illustrated my findings using synthetic and real-world data sets from various

scientific domains.

8.2 Contribution to the literature

This thesis leveraged various theories and methods from multiple research domains,

including sociology, the science of science, machine learning, and network science.

On the one hand, I developed an interdisciplinary approach to the study of

citation, social, and collaboration networks. On the other hand, my work has

made contributions to knowledge in each of these research domains, which I shall

summarise in this section.

8.2.1 Sociology

My key contribution to sociology is to show that social capital can be quantified

by combining both network structure and non-topological node features. This

dovetails with current debates in the social sciences highlighting that most network-

based theories of social capital tend to ignore the non-structural determinants of

social capital. I proposed novel brokerage measures by extending Burt’s effective

size, and showed that they can provide finer-grained perspectives on social capital.



8.2. Contribution to the literature 171

This will open new avenues for future research in the social sciences concerned with

social capital considering there is an increasing interest in incorporating people’s

individual characteristics (e.g., gender and ethnicity) into social network analysis

to reduce the potential issues of bias. In addition, my work on cities shows how

the geo-social approach can contribute to measuring the social capital of cities,

thus extending the scope of analysis from traditional observational units (such as

people and organisations) to geographical places. Finally, my work concerned with

deep learning demonstrates the powerful ability of learning representations with

GNN methods. This can stimulate novel applications based on deep learning to

sociological domains concerned with “learning” social capital in contrast to classic

rule-based measures of social capital (e.g., effective size) developed by sociologists.

8.2.2 Science of science

Citation, collaboration, and social networks are essential types of networks that

are studied and used in the science of science. In this case, my thesis, focusing on

these networks, provides advancement of knowledge in the science of science from

various aspects. First, the proposed intra- and inter-brokerage measures can be

used to study how finer-grained brokerage based on a certain node attribute is

associated with scientific success and thus informs scientists and policymakers on

how to build social and collaboration networks in science. Second, I showed how

to use interconnected geo-social network representations to provide new insights

on the social capital of cities extracted from both resident scientists and external

collaborators. In so doing, my work has policy implications for policy-makers on

improving the scientific performance of a city considering both types of scientists.
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Finally, citation networks are key examples I used in the two projects on deep

learning. I demonstrated that both citation graph and node features (e.g., text

data) can be used together to learn the embedding of scientific papers with

advanced graph-based deep learning methods (e.g., GCNs). The learned node

embeddings can then be used for downstream tasks, such as classification.

8.2.3 Intersection of machine learning and network science

My work concerned with deep learning lies at the intersection between machine

learning and network science. As a junior network scientist, I engaged with the

growing literature about machine learning with graph-structured data. My key

contributions to the intersection between machine learning and network science

are two-fold: (i) I showed that a certain degree of alignment between graph,

features, and ground truth is needed for node classification using GCNs. This

can allow machine learning practitioners to think about the role graph structure

played in the learning process, given that there is a whole field called network

science dedicated to studying the structures and dynamics of networks; and (ii) I

demonstrated that, when there are no graphs available in a data set, one could use

graph-theoretical approaches to infer and construct graphs that can aid machine

learning tasks, e.g., classification. Scientists in these two communities of machine

learning and network science could learn from, and contribute to, each other’s

field since there are overlapping research interests and shared methodologies.
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8.3 Future work

I have been lucky to be offered a postdoctoral position at the Centre for Science

of Science and Innovation1 at the Kellogg School of Management at Northwestern

University in the US.I envisage working on projects concerned with the science

of science (Fortunato et al., 2018) and addressing several research questions that

I shall briefly outline below. I will conduct my future studies by leveraging the

expertise of network science and machine learning that I developed during my

PhD.

8.3.1 Graph representation learning and science of science

Graphs are ubiquitous mathematical abstractions that can describe complex

systems of relations and interactions. Science can be seen as a heterogeneous

information network composed of scientists, publications, publication venues,

topics, and interactions among them. The recent development on graph repre-

sentation learning (Bronstein et al., 2017) in the machine learning community

provides powerful computational methods, such as GNNs, that allow us to learn

embeddings of node or graph level to investigate questions in the science of science

by leveraging large-scale bibliometric data sets such as Microsoft Academic Graph.

I propose to explore the following research avenues:
1https://www.kellogg.northwestern.edu/research/science-of-science.aspx
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Journal representation learning

The goal is to combine the citation network among journals and journal-level

high-dimensional features (e.g., topics that appeared in the journal) to learn low-

dimensional representations of journals in an unsupervised manner with GNNs.

The learned journal vector representations can be used in a number of applications:

(i) quantifying the multidisciplinarity of journals through the pairwise distance

between journals using the vector representations of journals; (ii) visualising

science mapping; and many others.

Topic representation learning

With a similar learning framework as before but a focus on scientific topics instead

of journals, the learned topic vector can be used to quantify the distance of topics,

which could contribute to measuring the novelty of papers. For example, a paper

associated with topics far away from each other can be considered as one with

high novelty. This will further allow us to study the relationship between the

novelty of papers and their future success or failure (Wang et al., 2019a).

8.3.2 Scientific career

The asymmetry of transition of scientists between research fields

Recent evidence shows that scientists’ research interests keep evolving during their

careers (Jia et al., 2017; Zeng et al., 2019). Although science tends to be more

interdisciplinary, the transition between fields for scientists seems not symmetric.



8.3. Future work 175

For example, it appears that the transition from physics to social science is more

likely than that from social science to physics. Can we find evidence for this

hypothesis? Is there any topic hierarchy that facilitates or hinders the transition

of a scientist? By addressing these questions, I will shed light on the possibility of

career transition for young scientists. This will likely inform university leaders

on the setting and arrangement of courses for students in less-advantaged fields

towards interdisciplinary research. For example, students in the social sciences

would benefit from learning computational methods with a view to building a

career as computational social scientists and establishing stronger collaborations

with scholars within the computational fields (e.g., computer science and physics).

8.3.3 Science of science for artificial intelligence research

The science of science uses large-scale data to search not only for universal patterns

but also for domain-specific regularities. Artificial intelligence becomes increasingly

important because it provides promisingly new tools to improve the intelligence

of our society. Although a few SciSci studies have focused on AI (Frank et al.,

2019), there is still relatively little comprehensive SciSci research dedicated to AI

that considers its domain-specific characteristics. AI is different from traditional

fields (e.g., physics and chemistry) in many ways. For example, unlike in other

traditional fields, scholars in AI tend to publish papers in conferences as well as in

journals, and pay large attention to the reproducibility of research results. Under

the global technological innovation competition (e.g., between the US and China),

it is essential to study the patterns and dynamics of collaboration, career, and

citation for AI research at different levels, including scholars, institutions, and
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countries. The objective of my future study will be to understand the evolution

of collaboration patterns, and then assess whether these network patterns are

associated with scholars’, institutions’, and countries’ performance.

8.3.4 Incorporating network representations beyond pair-

wise interactions into science of science

Recently, the network science community has showed an increasing interest in

using network representations beyond pairwise interactions, including hypergraphs

and simplicial complexes (Battiston et al., 2020; Lambiotte et al., 2019). These

two representations offer a more realistic view to model real-world phenomena such

as scientific collaboration. In the past few years, most studies at the intersection

between the science of science and network science have used ordinary networks

considering pairwise interactions, e.g., co-authorship networks and keyword co-

appearance networks. These representations will inevitably filter out the higher-

order relationships. A simple example is the case of a closed triangle in a

co-authorship network, which cannot tell us whether the three connected scientists

have indeed co-authored a common paper.

A handful of works have already made an initial effort and showed interesting

results in the direction of incorporating higher-order network representations into

the science of science (see Refs. (Patania et al., 2017; Salnikov et al., 2018)).

Inspired by these previous works, I will leverage rich longitudinal bibliometric

data sets and consider using tools and techniques developed by network scientists

on hypergraphs or simplicial complexes to study various questions related to
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knowledge creation and diffusion.
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Appendix of Chapter 6

A.1 Finding optimal dimensions

A key element of the SAM described in the main paper is to find lower dimensional

representations of the graph, features and ground truth.

To determine the dimension of the representative subspaces, I propose the following

heuristic:

(k∗
X , k∗

Â
) = arg max

kX ,k
Â

(
∥D(X100, Â100, Y )∥F − ∥D(X, Â, Y )∥F

)
. (A.1)

I choose k∗
Y to be equal to the number of categories in the ground truth as they

are non-overlapping. Thus, k∗
X and k∗

Â
range from k∗

Y to their maximum values,

C0, the dimension of the feature vectors, and N , the number of nodes in the

graph, respectively.
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To find the values for k∗
X and k∗

Â
, I scan different possible combinations of kX and

k
Â

. I applied two rounds of scanning. In the first scanning round, in the intervals

of kX and k
Â

, I picked 10 equally spaced values that contain the minimum and

maximum possible values for kX and k
Â

. For example, in Cora, k∗
Y equals 7

because the number of categories in the ground truth is 7. Thus kX ranges from

7 to 1, 433. At the end of the first round, the optimal values of k∗
X and k∗

Â
are

1, 433 and 282, respectively (see Figure A.1c).

In the second scanning round, I applied a very similar process to the one just

described. I set the scanning intervals of kX and k
Â

as the neighbours of k∗
X and

k∗
Â

found in the first round, respectively. For example, in Cora, for the second

round, I set the intervals of kX and k
Â

as [1, 274, 1, 433] and [7, 557]. Again, I split

the new intervals with 10 equally spaced values. I have also shown the scanning

results for other data sets in Figure A.1.

A.2 Replicating experiments on a variant of

GCN

First, I would like to highlight that the alignment metric is independent of the

architecture and only relies on the data. Therefore, I expect that the conclusion

will be consistent with different variants of GCNs: the convolution operation in

GCN (Kipf and Welling, 2017) can be seen as a neighbourhood aggregation or

message-passing scheme. Many variants based on the Kipf and Welling version of

GCN have been proposed, but they can ultimately be expressed as neighbourhood

aggregation or message passing schemes. For these different GCNs, I expect
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my hypothesis that a certain degree of alignment between ingredients is needed

for them to perform well would hold since the working principles of variants of

GCNs and the original version I consider are similar. To substantiate this claim, I

have replicated my experiments using a recently proposed variant of GCN: SGC

proposed by Ref. (Wu et al., 2019). SGC is a simplified version of the original

GCN proposed by Kipf and Welling that removes nonlinearities and collapses

weight matrices between consecutive layers. It has been shown that SGC can

achieve competitive performance on node classification tasks and yields up to

several orders of magnitude speedup.

I use the implementation provided by PyTorch Geometric1, which is a popular

GDL extension library for PyTorch. my results on SGC are shown below in

Figure A.2 and Figure A.3. The figure suggests that results based on SGC are

consistent with those produced using GCN (Kipf and Welling, 2017).

A.3 Choices of distance measures

Within the distances discussed by Ref. (Ye and Lim, 2016), there are two “families”:

1. average distances that use all the principal angles, e.g., the Chordal distance,(∑α
j=1 sin2 θj

)1/2
, and the Grassmann distance,

(∑α
j=1 θ2

j

)1/2
.

2. extremal distances that use only the maximum principal angle between two

subspaces, e.g., the Projection distance, sin θαwhere θα is the maximum

angle.
1https://github.com/rusty1s/pytorch_geometric/blob/master/examples/sgc.py
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my numerics show that average distances (the first family) display similar perfor-

mance, as they leverage information from all the principal angles. Hence these

measures produce a similar performance to the Chordal distance. To show this, I

have replicated my experiments using the Grassmann distance (see Figure A.4

below). The results are consistent with those produced with Chordal distance.

On the other hand, I expect that extremal distances (the second family) will

have less expressive power to capture the alignment between subspaces since they

use solely the maximum principal angle and do not consider the information

contained in the other principal angles. To demonstrate this point, I replicated my

experiments with the Projection distance (see Figure A.5 below). my results show

that the Projection distance is indeed less effective than the Chordal distance in

representing the alignment between subspaces.

A.4 Supplemental tables and figures
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(a) Constructive exam-
ple:round 1

(b) Constructive exam-
ple:round 2

(c) Cora:round 1 (d) Cora:round 2

(e) AMiner:round 1 (f) AMiner:round 2

(g) Wikipedia I:round 1 (h) Wikipedia I:round 2

(i) Wikipedia II:round 1 (j) Wikipedia II:round 2

Figure A.1: Summary of results on scanning subspaces.
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Figure A.2: Degradation of the classification performance as a function of
randomisation with SGC. Each panel shows the degradation of the classification
accuracy as a function of the randomisation of graph, features and both, for a
different data set. Error bars are evaluated over 100 realisations: for zero percent
randomisation, I report 100 runs with random seeds; for the rest, I report 1 run
with random seed for 100 random realisations. The horizontal lines correspond to
the limiting cases.
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Figure A.3: Classification performance versus the SAM with SGC. Each
panel shows the accuracy of SGC versus the SAM for all the runs presented in
Figure A.2. Error bars are evaluated over 100 randomisations.
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Figure A.4: Classification performance versus the SAM with Grassmann
distance. Each panel shows the accuracy of GCN versus the SAM. Error bars
are evaluated over 100 randomisations.
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Figure A.5: Classification performance versus the SAM with Projection
distance. Each panel shows the accuracy of GCN versus the SAM. Error bars
are evaluated over 100 randomisations.
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Appendix of Chapter 7

B.1 Comparison with Seurat clustering

Single-cell clustering is indeed an area where some of the gold standard methods are

based on applying community detection to graphs derived from cell features (e.g.,

gene expression levels) by using the Louvain algorithm to maximise modularity.

Seurat (Satija et al., 2015) is such a graph-based clustering approach, where a kNN

graph is constructed from the PCA decomposition of the original feature vectors,

and the obtained graph is then partitioned into communities (corresponding to

cell types) by Louvain modularity maximisation.

It is important to remark that there is a fundamental distinction between the

Seurat setting and my work. While my method (CkNN+GCN) addresses a

classification problem (supervised setting, in which some class labels are known

as ground truths and used in the training), Seurat solves a clustering problem

(unsupervised setting, in which there are no class labels available on which to train).
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Clustering aims to group similar samples together and dissimilar samples into

distinct groups based on the similarity between their features (Liu and Barahona,

2020). Seurat clustering involves three steps: (i) compute the principal components

of the feature vectors, and select the top T principal components based on a

choice of p, the ratio of explained variance to total variance; (ii) construct a kNN

graph based on the Euclidean distance between the vectors defined by the top T

principal components of each sample; and (iii) perform community detection on

the kNN graph using Louvain modularity maximisation. In this process, several

hyperparameters are chosen, including the ratio p, which determines the number

of principal components in step (i), and the number of neighbours k in the kNN

graph in step (ii). The final result of Seurat is a partition of the data set into

clusters (“graph communities”) derived intrinsically from the properties of the

data.

My method (CkNN+GCN), on the other hand, attempts a classification task where

I leverage both the features and a feature-derived CkNN graph of appropriate edge

density to train the weights of a GCN in order to maximise its classification power.

My use of GCN and CkNN is distinctive in this setting, as is the optimisation of

the edge density of the graph to maximise the quality of the classification. Given

that the objectives of Seurat and my method are different, it is not straightforward

to compare both approaches, but I have produced a setting to compare both

methods. In particular, I have devised a comparison between my CkNN+GCN

method and two Louvain-based clustering methods: Seurat (PCA+kNN+Louvain)

and a simpler application of Louvain to a kNN graph of features (kNN+Louvain)

without applying PCA in the first step. These three methods are compared to a
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simple kNN classifier (kNNC).

To compare the methods, I use the labels in the training and validation sets

(defined as above in my CkNN+GCN experiments) as ground truths and tune

the hyperparameters k and p (k is grid-searched over [2, 4, 8, 16, 32, 64], and p is

grid-searched over [0.5, 0.6, 0.7, 0.8, 0.9]) to maximise the similarity between the

obtained clusters and the ground truth partitions. Once the hyperparameters

have been optimised, I then use each method to cluster the data, and I compute

the quality of the clustering against the test set. To evaluate the quality of the

clustering, I use two standard measures: the Adjusted Rand Index (ARI) and the

Normalised Mutual Information (NMI). Both of these measures are normalised

between 0 (random assignment) and 1 (perfect agreement), with higher values

signifying better assignment. My results are presented in Table B.5. My results

show that my method (CkNN+GCN) performs better on average than both

Louvain-based clustering methods on my data sets. However, CkNN+GCN does

not always outperform the other methods; in particular, Seurat is the best on the

Cell data set.

This might reflect particularities of the Cell data set, which contains high-

dimensional vectors with high levels of noise that might benefit from the effective

dimensionality reduction and filtering that PCA enforces. On the other hand,

CkNN+GCN has been kept as a broad-purpose method, i.e., not optimised for

a particular type of data. For instance, I use default values for some GCN hy-

perparameters (learning rate, number of hidden units, drop out rate) without

optimising them on each data set. The aim is to provide robust outcomes across

diverse data sets, as shown in Table B.5. Hence, there is room to potentially
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optimise my method (CkNN+GCN) specifically for single-cell genomics, but I feel

this falls beyond the scope of my current work and will be investigated in future

research.

Still, I would like to remark that clustering and classification algorithms are not

directly comparable since they have different objectives and learning contexts.

Nonetheless, I hope that my additional experiments provide some insight into the

comparison.

B.2 Supplemental tables and figures

Table B.1: Classification accuracy (in percent) on the test set (average and
standard deviation over 10 runs with random initialisations) for 7 data sets with
8 classifiers (four graph-less methods; GCN with four graph constructions).

Classifier Constructive Cora AMiner Digits FMA Cell Segmentation

MLP = GCN (No graph) 42.1 ± 1.2 54.2 ± 1.7 54.4 ± 1.1 82.0 ± 1.3 34.3 ± 0.8 79.5 ± 3.0 72.0 ± 2.4
kNNC 31.4 ± 0.0 38.2 ± 0.0 28.0 ± 0.0 88.3 ± 0.0 30.6 ± 0.0 58.7 ± 0.0 68.8 ± 0.0
SVM 40.0 ± 0.0 55.9 ± 0.0 51.4 ± 0.0 87.7 ± 0.0 35.3 ± 0.0 81.5 ± 0.0 87.7 ± 0.0
RF 36.3 ± 1.0 56.1 ± 1.2 47.7 ± 1.5 83.0 ± 0.5 33.0 ± 0.9 88.0 ± 0.7 88.8 ± 0.7

GCN (kNN) 53.9 ± 0.9 66.4 ± 0.6 59.2 ± 1.3 92.0 ± 0.4 35.6 ± 1.0 83.8 ± 1.6 83.5 ± 0.7
GCN (MkNN) 45.2 ± 1.6 64.1 ± 0.4 61.8 ± 0.8 93.2 ± 0.3 35.6 ± 0.7 84.0 ± 2.0 83.0 ± 0.6
GCN (CkNN) 51.1 ± 1.3 66.6 ± 0.4 61.6 ± 0.8 93.4 ± 0.3 36.0 ± 0.8 84.0 ± 2.1 83.9 ± 0.6
GCN (RMST) 45.9 ± 1.5 64.8 ± 0.6 61.5 ± 1.3 89.3 ± 0.5 35.4 ± 0.7 84.9 ± 1.1 83.0 ± 1.6

Table B.2: Selected density parameters and density of constructed graphs in the
graph densification process (Supplemental Figure B.1)

kNN MkNN CkNN (δ = 1) RMST (k = 1)
Data set k∗ Density k∗ Density k∗ Density γ∗ Density

Constructive 9 0.01741 104 0.02101 33 0.00920 0.07421 0.02724
Cora 12 0.00842 39 0.00436 74 0.01476 0.02924 0.01242

AMiner 8 0.00748 199 0.01786 199 0.03852 0.02317 0.00859
Digits 5 0.00404 39 0.01400 33 0.01564 0.00346 0.00117
FMA 1 0.00100 2 0.00103 13 0.00398 0.00146 0.00107
Cell 1 0.00100 8 0.00133 41 0.00753 0.00320 0.00124

Segmentation 7 0.00387 20 0.00637 12 0.00447 0.03423 0.00117
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Figure B.1: Graph construction search in the densification process. The red line
indicates the mean classification accuracy on the validation set of 10 runs with
random weight initialisations as a function of the density parameter. The red
shaded regions denote the standard deviation. The mean classification accuracy
on the validation of two limiting cases (no graph and complete graph) is also
added. The red vertical line indicates the optimised graph. The purple line shows
the densities of the constructed graphs.
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Figure B.2: The red line indicates the mean classification accuracy on the validation
set of 10 runs with random weight initialisations as a function of the density
parameter. The red shaded regions denote the standard deviation. The green
line indicates the alignment. I report the Pearson correlation coefficients and
p-values between mean accuracy and alignment. ∗p-value < 0.05,∗∗ p-value <
0.01,∗∗∗ p-value < 0.001.
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Figure B.3: The red line indicates the mean classification accuracy on the validation
set of 10 runs with random weight initialisations as a function of the density
parameter. The red shaded regions denote the standard deviation. The red dashed
line represents the mean classification accuracy on the validation of no graph case.
The brown line shows the ratio of class separation in the densification process.
The brown shaded regions denote the standard deviation. The brown dashed line
represents the ratio of class separation of no graph case. I report the Pearson
correlation coefficients and p-values between mean accuracy and mean ratio of
class separation. ∗p-value < 0.05,∗∗ p-value < 0.01,∗∗∗ p-value < 0.001.
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Figure B.4: Graph construction search in the sparsification process. The blue line
indicates the mean classification accuracy on the validation set of 10 runs with
random weight initialisations as a function of the density parameter. The blue
shaded regions denote the standard deviation. The mean classification accuracy
on the validation of no graph is added as well. The blue vertical line indicates the
optimised graph on the validation set. The purple line shows the densities of the
sparsified graphs.
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Table B.3: Comparison between optimised CkNN and sparsification of optimised
CkNN graphs (Supplemental Figure B.4).

Top 4 CkNN graphs Optimised CkNN Sparsification of optimised CkNN
on validation set Data set k∗ Edge density ⟨Degree⟩ Accuracy (Test) σ∗ Edge density ⟨Degree⟩ Accuracy (Test)

(1)

Constructive 33 0.00920 9.2 51.1 0.3479 0.00630 6.3 51.6
Cora 74 0.01476 36.7 66.6 0 0.01476 36.7 66.6

AMiner 199 0.03852 79.8 61.6 0.1618 0.01840 38.1 62.5
Digits 33 0.01564 28.1 93.4 0 0.01564 28.1 93.4
FMA 13 0.00398 8.0 36.0 0 0.00398 8.0 36.0
Cell 41 0.00753 15.0 84.0 0.5212 0.00240 4.8 85.0

Segmentation 12 0.00447 10.3 83.9 0.3806 0.00356 8.2 84.0
Average improvement (+8.3) (+8.7)

(2)

Constructive 51 0.01445 14.4 51.8 0.1898 0.01197 12.0 53.6
Cora 46 0.00897 22.3 66.3 0 0.00897 22.3 66.3

AMiner 233 0.04838 100.2 61.3 0.1418 0.02396 49.6 63.6
Digits 28 0.01319 23.7 93.2 0.4222 0.00556 10.0 93.2
FMA 22 0.00713 14.3 35.2 0.3018 0.00561 11.2 35.8
Cell 35 0.00625 12.5 83.6 0.6409 0.00176 3.5 86.9

Segmentation 7 0.00253 5.8 84.0 0.2607 0.00252 5.8 84.2
Average improvement (+8.1) (+9.3)

(3)

Constructive 16 0.00618 6.2 49.0 0 0.00618 6.2 49.0
Cora 39 0.00756 18.8 66.8 0 0.00756 18.8 66.8

AMiner 171 0.03115 64.5 62.1 0.1618 0.01656 34.3 63.5
Digits 21 0.00978 17.6 92.9 0.3425 0.00650 11.7 93.0
FMA 41 0.01457 29.1 35.9 0 0.01457 29.1 35.9
Cell 48 0.00904 18.1 81.9 0.7806 0.00141 2.8 84.1

Segmentation 14 0.00522 12.1 83.8 0 0.00522 12.1 83.8
Average improvement (+7.7) (+8.2)

(4)

Constructive 22 0.00697 7.0 51.2 0.3084 0.00605 6.0 51.4
Cora 63 0.01246 30.9 65.9 0 0.01246 30.9 65.9

AMiner 78 0.01071 22.2 62.0 0.1019 0.01021 21.1 62.1
Digits 24 0.01125 20.2 92.9 0 0.01125 20.2 92.9
FMA 19 0.00601 12.0 34.5 0.6808 0.00201 4.0 35.2
Cell 30 0.00527 10.5 81.8 0.9601 0.00099 2.0 85.3

Segmentation 10 0.00372 8.6 83.9 0.2607 0.00365 8.4 84.1
Average improvement (+7.7) (+8.3)

Table B.4: Classification accuracy (test set) obtained with three free feature-only
methods: MLP, kNN+LDS+GCN (Franceschi et al., 2019), and CkNN+GCN (
Chapter 7). For information, I also include the accuracy achieved by GCN applied
to features together with the additional graph given in the original data set (when
available).

Method Cora AMiner Digits FMA Cell Segmentation Avg. improvement

MLP 54.2 54.4 82.0 34.3 79.5 72.0 —
kNN+LDS+GCN (Franceschi et al., 2019) 69.0 59.3 94.6 36.2 80.0 83.9 (+7.8)

CkNN + GCN (Chapter 7) 66.6 61.6 93.4 36.0 84.0 83.9 (+8.2)

Additional original graph + GCN 81.1 74.8 – – – – –

Table B.5: Quality of assignments (test set) obtained by a simple kNN classifier
(kNNC), two Louvain-based methods (kNN+Louvain, Seurat), and my method
(CkNN+GCN). The hyperparameters of all methods (kNNC, Louvain methods,
and CkNN+GCN) were optimised on the training and validation sets. Two quality
measures are computed (ARI and NMI), both normalised between 0 and 1, with
higher values indicating better agreement with the ground truth of the test set.
The average improvement with respect to the kNNC is also presented in the last
column.

ARI

Method Cora AMiner Digits FMA Cell Segmentation Avg. improvement

kNNC 0.090 0.036 0.766 0.087 0.434 0.456 —
kNN+Louvain 0.337 0.301 0.840 0.086 0.721 0.273 0.115

Seurat=PCA+kNN+Louvain 0.321 0.305 0.888 0.086 0.822 0.189 0.124
CkNN+GCN (Chapter 7) 0.382 0.348 0.863 0.108 0.767 0.702 0.217

NMI
Method Cora AMiner Digits FMA Cell Segmentation Avg. improvement

kNNC 0.130 0.131 0.806 0.123 0.644 0.532 —
kNN+Louvain 0.386 0.323 0.892 0.125 0.811 0.513 0.114

Seurat=PCA+kNN+Louvain 0.391 0.356 0.904 0.118 0.904 0.350 0.110
CkNN+GCN (Chapter 7) 0.408 0.409 0.889 0.147 0.854 0.753 0.183
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Figure B.5: The blue line indicates the mean classification accuracy on the
validation set of 10 runs with random weight initialisations as a function of the
density parameter. The blue shaded regions denote the standard deviation. The
green line indicates the alignment. I report the Pearson correlation coefficients
and p-values between mean accuracy and alignment. ∗p-value < 0.05,∗∗ p-value <
0.01,∗∗∗ p-value < 0.001.
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Figure B.6: The blue line indicates the mean classification accuracy on the
validation set of 10 runs with random weight initialisations as a function of the
density parameter. The blue shaded regions denote the standard deviation. The
blue dashed line represents the mean classification accuracy on the validation of no
graph case. The brown line shows the ratio of class separation in the sparsification
process. The brown shaded regions denote the standard deviation. The brown
dashed line represents the ratio of class separation of no graph case. I report the
Pearson correlation coefficients and p-values between mean accuracy and mean
ratio of class separation. ∗p-value < 0.05,∗∗ p-value < 0.01,∗∗∗ p-value < 0.001.



Appendix C

Publications

Journal publications

• Yifan Qian, Paul Expert, Tom Rieu, Pietro Panzarasa, and Mauricio

Barahona. Quantifying the alignment of graph and features in deep learning.

IEEE Transactions on Neural Networks and Learning Systems

(2021). doi: https://doi.org/10.1109/TNNLS.2020.3043196

• Yifan Qian, Paul Expert, Pietro Panzarasa, and Mauricio Barahona. Ge-

ometric graphs from data to aid classification tasks with graph convo-

lutional networks. Patterns Cell Press 2, no. 4 (2021): 100237.

doi: https://doi.org/10.1016/j.patter.2021.100237

https://doi.org/10.1109/TNNLS.2020.3043196
https://doi.org/10.1016/j.patter.2021.100237


197

Working papers

• Yifan Qian, Luca Verginer, Xiancheng Li, Massimo Riccaboni, and Pietro

Panzarasa. Network foundations of scientific impact and innovation of cities.

In Preparation for Submission.

• Yifan Qian and Pietro Panzarasa. Intra- and inter-brokerage in social

networks. In Preparation for Submission.

• Yifan Qian, Marco Serino, Leslie DeChurch, Noshir Contractor, and Pietro

Panzarasa. The structural foundations of creativity: A network-based study

of co-productions among Italian theatres. Data Analysis.

• Yifan Qian, Luca Verginer, Greg Morrison, Massimo Riccaboni, and Pietro

Panzarasa. Social distance with editors in co-authorship networks. Data

Analysis.

• Yifan Qian, Ching Jin, and Pietro Panzarasa. Teams with unexpected

collaboration between institutions are associated with higher impact. Data

Analysis.

• Xiancheng Li, Yifan Qian, Mauricio Barahona, and Pietro Panzarasa.

Publishing the first patent boosts scientists’ performance. Data Analysis.

• Hongwei Peng, Yifan Qian, and Pietro Panzarasa. Quantifying the tempo-

ral patterns of interdisciplinarity in scientists’ careers. Data Analysis.



Appendix D

Conference presentations

• Chapter 3 was presented in: IC2S2 (2019), Poster.

• Chapter 4 was presented in: NetSci (2021), Talk; NetSci (2020), Poster;

IC2S2 (2020), Poster; IC2S2 (2019), Talk.

• Chapter 6 was presented in: IC2S2 (2019), Poster; Data Natives (2019),

Talk; UK Network Science workshop (2018), Talk; IC2S2 (2018), Poster;

NetSci Satellite on Machine Learning in Network Science (2018), Talk;

NetSci (2018), Poster.

• Chapter 7 was presented in: NetSci (2020), Talk; IC2S2 (2020), Poster.

NetSci: International School and Conference on Network Science.

IC2S2: International Conference on Computational Social Science.
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