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THE BIGGER PICTURE Supervised classification assigns unseen samples to classes based on their fea-
tures by learning from examples with known class labels. We show that classification can be improved
by using the sample features not only as the basis for classification, but also as a means to construct geo-
metric graphs that encapsulate the closeness between samples. Such feature-derived graphs can be used
within graph-based deep-learning models to improve classification. To understand the benefits of these
graphs, we show that they align the data to the class labels and enhance class separability. We also demon-
strate how to make the graphs sparser, and hence more efficient, while still potentially improving their per-
formance. Our findings are timely given the increasing interest in combining graphs with classification and
learning tasks.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Traditional classification tasks learn to assign samples to given classes based solely on sample features. This
paradigm is evolving to include other sources of information, such as known relations between samples.
Here, we show that, even if additional relational information is not available in the dataset, one can improve
classification by constructing geometric graphs from the features themselves, and using themwithin a Graph
Convolutional Network. The improvement in classification accuracy is maximized by graphs that capture
sample similarity with relatively low edge density. We show that such feature-derived graphs increase the
alignment of the data to the ground truth while improving class separation. We also demonstrate that the
graphs can be made more efficient using spectral sparsification, which reduces the number of edges while
still improving classification performance. We illustrate our findings using synthetic and real-world datasets
from various scientific domains.
INTRODUCTION

Classifying samples into a given set of classes is one of the

fundamental tasks of data analytics.1 In supervised machine

learning, traditional methods train a classifier using a dataset in

which both features and class labels are observed for each sam-

ple. Once a classifier has been learned from the training dataset,

its parameters are optimized over a validation set. Then the

model can be used to predict the class of unseen samples based

on their features. Intuitively, a good classifier learns a represen-
This is an open access article und
tation of the data where samples belonging to different classes

are well separated.

In some instances, datasets contain additional information in

the form of observed relational links between samples. For

example, in a dataset of scientific articles, each article will be

described by features that encode its text, but we might also

have information on citations between articles; in a dataset of pa-

tients, each person will be associated with a series of clinical or

socio-economic features, but we might also have information

about their social interactions. Such relational information could
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Figure 1. Geometric graphs constructed

from data features can aid sample classifica-

tion

For a Figure360 author presentation of this figure,

see https://doi.org/10.1016/j.patter.2021.100237.

(A) Workflow for GCN classification using feature-

derived graphs.

(B) The validation set is used to search for graphs

with optimized edge density—here illustrated with

the AMiner dataset and CkNN graph construction.

In red, the GCN classification accuracy on the vali-

dation set as a function of the density parameter, k.

The results are averaged over ten runs with random

weight initializations; shaded region represents

standard deviation. As we sweep k from ‘‘no graph’’

(MLP) to complete graph (mean field, random

assignment), the classification accuracy on the

validation set exhibits a maximum for a CkNN graph

with density parameter k�. In purple, edge density of

the CkNN graphs as k is varied. Figures for all graph

constructions and datasets are provided in Fig-

ure S1. Also shown below, graph visualizations us-

ing the spring layout for over-sparse, optimized, and

over-dense graphs, with nodes colored according

to their ground truth class.
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be used in conjunction with the sample features to achieve the

best possible class separation, and hence improved classifica-

tion. Graphs are a natural way to represent such relational links:

the samples are viewed as the nodes of the graph, and the rela-

tionships between samples are formalized as edges. A large

number of machine learning methods have been proposed to

leverage the information in such graph structure. Graph Neural

Networks (GNNs) is a nascent class of methods, which refers

to a broad set of techniques attempting to extend deep neural

models to graph-structured data.2 GNN has witnessed success

in a variety of research domains, including computer vision,3,4

natural language processing,5–8 traffic,9,10 recommendation sys-

tems11,12 chemistry13,14 and many other areas.15–20 For an in-

depth review of GNNs, see Wu et al.21

Recently, work with Graph Convolutional Networks (GCNs)5

has suggested that using a graph of samples in conjunction

with sample features can improve classification performance

when compared with traditional methods that use only features.

Computationally, the graph allows the definition of a convolution

operation that exchanges and aggregates the features of sam-

ples that are connected on the graph. If the graph and the fea-

tures align well with the underlying class structure,22 the graph

convolution operation homogenizes features of neighboring no-

des, which will also tend to be more similar, while making less

similar samples, which will be more distant on the graph, belong

to other classes.

In many instances, extra relational information in the form of a

graph is not easily available. However, the intuition that nodes

that are close in feature space tend to belong to the same class
2 Patterns 2, 100237, April 9, 2021
can still be exploited by constructing geometric graphs directly

from the data features, and in doing so creating neighborhoods

of similar samples. Such feature-derived graphs can then be

used to aid and potentially sharpen the classification.

Here, we explore the benefit of constructing geometric graphs

from the features of the samples and using themwithin a GCN for

sample classification (Figure 1A). Graph construction, or infer-

ence, is a problem encountered in many fields,23 from neuroi-

maging to genetics, and can be based on many different types

of heuristics, from simple thresholding24 or statistically signifi-

cant group-level thresholding25 to sophisticated regularization

schemes.26 In general, the goal is to obtain graphs that concisely

preserve key properties of the original dataset as sparsely as

possible, i.e., with a low density of edges. In this work, we use

several popular geometric graph constructions to extract graphs

from data, and study how the classification performance de-

pends on the graph construction method and the edge density.

We find that there is a range of relatively low edge densities over

which the constructed graphs improve the classification perfor-

mance. Among the construction methods, we show that the

recently proposed Continuous k-Nearest Neighbor (CkNN)27

performs best for GCN classification. To gain further intuition

about the role played by the graph in improving classification,

we compute two simple measures: (1) the alignment of the

convolution of graph and features with the ground truth and (2)

the ratio of class separation in the output activations of the

GCN. We show that the optimized geometric graphs increase

the alignment and the class separation. Finally, we show that

the graphs can be made more efficient using spectral graph

https://doi.org/10.1016/j.patter.2021.100237


Table 1. Classification accuracy (in percent) on the test set (averaged over ten runswith random initializations) for seven datasetswith

eight classifiers (four graph-less methods; GCN with four graph constructions)

Classifier Constructive Cora AMiner Digits FMA Cell Segmentation

Average

improvement

MLP = GCN (no graph) 42.1 54.2 54.4 82.0 34.3 79.5 72.0 –

kNNC 31.4 38.2 28.0 88.3 30.6 58.7 68.8 ð� 10:6Þ
SVM 40.0 55.9 51.4 87.7 35.3 81.5 87.7* ð+ 3:0Þ
RF 36.3 56.1 47.7 83.0 33.0 88.0* 88.8* ð+ 2:1Þ
GCN (kNN) 53.9* 66.4* 59.2 92.0 35.6* 83.8 83.5 ð+ 8:0Þ
GCN (MkNN) 45.2 64.1 61.8* 93.2* 35.6* 84.0 83.0 ð+ 6:9Þ
GCN (CkNN) 51.1* 66.6* 61.6* 93.4* 36.0* 84.0 83.9 ð+ 8:3Þ
GCN (RMST) 45.9 64.8 61.5 89.3 35.4 84.9* 83.0 ð+ 6:6Þ
The standard deviation is reported in Table S2. The top two results for each dataset aremarkedwith asterisks. Overall, GCNwith CkNNgraphs displays

the best performance. The density parameters of optimized graphs are reported in Table S3.
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sparsification,28 which reduces the edge density of the opti-

mized CkNN graphs while improving further the classification

performance.

RESULTS

Geometric graphs constructed from data features can
aid sample classification
We consider geometric graph constructions that fall broadly in

two groups: (1) three methods based on local neighborhoods,

i.e., k-Nearest Neighbor (kNN), Mutual k-Nearest Neighbor

(MkNN), and CkNN27 graphs; and (2) a method that balances

local and global distances measured on the Minimum Spanning

Tree (MST), i.e., the Relaxed Minimum Spanning Tree (RMST).29

In all cases, we start from an MST to guarantee that the resulting

graph comprises a single connected component, and we add

edges based on the corresponding distance heuristics. In each

construction, a parameter regulates the edge density of the

graph: k in kNN, MkNN, and CkNN, and g in RMST (seeMethods

for a full description of the methods).

For each dataset and each graph construction, we find the

edge density that maximizes the average GCN classification ac-

curacy on the validation set by sweeping over 50 values of the

edge density, from sparse to dense. For each value of the den-

sity, we run the GCN classifier 10 times starting from random

weight initializations to compute the average accuracy. Note

that the two limiting cases are well characterized: the ‘‘no graph’’

limit corresponds to the Multilayer Perceptron (MLP); the ‘‘com-

plete graph’’ limit is equivalent tomean field and leads to random

class assignment.22 Figure 1B shows the classification perfor-

mance of a GCN with a CkNN graph of increasing density

applied to a dataset of computer science papers (AMiner), which

we use as our running example throughout. We find that adding

relatively sparse graphs improves the classification accuracy,

reaching a maximum increase of 10:9% at an edge density of

0.039 (k� = 199) on the validation set. Once the edge density

parameter is optimized on the validation set, we apply the

GCN classifier to the test set and the test accuracy is recorded.

In this case, the GCN yields an improvement of 7:2% in classifi-

cation accuracy on the test set with respect to MLP, as reported

in Table 1.
We have investigated six real-world datasets from different

domains, ranging from text (AMiner,30,31 Cora32) to music track

features (FMA)33,34 to single-cell transcriptomics (Cell)35 to imag-

ing (Digits,36 Segmentation37). We have also studied one

constructive dataset with a well-defined ground truth based on

a stochastic block model. For a detailed description of the data-

sets, see Note S1 and Table S1. We have compared the perfor-

mance of four graph-less, feature-based classifiers (MLP, kNN

classification [kNNC], Support Vector Machine [SVM], and

Random Forest [RF]) to GCN classifiers with optimized feature-

derived geometric graphs (Table 1). Our numerical experiments

indicate that the GCNs with feature-derived graphs generally

achieve better classification performance than graph-less clas-

sifiers. In particular, the CkNN graph construction achieves the

highest accuracy improvement (+8:3% on average above MLP)

across our seven datasets.

The role of feature-derived graphs in classification
Our results show improved classification performance of GCNs

with feature-derived geometric graphs of appropriate edge den-

sity. Indeed, over-sparse graphs perform close to MLPs, the no

graph limiting case, whereas over-dense graphs are detrimental,

as they approach the ‘‘mean field’’ limit that behaves like random

class assignment. Hence, there is a sweet spot of relatively low

edge density where graphs improve the performance maximally.

To gather further insight into the role of the constructed graphs in

classification, we explore their properties from two complemen-

tary perspectives.

Over-dense graphs degrade the alignment of graph-
convolved features with the ground truth
Consider the classification of N samples with F features into C

classes making use of a graph with adjacency matrix A. In

Qian et al.22 it was shown that good GCN performance requires

a certain degree of alignment between the linear subspaces

associated with the matrix of features, X˛RN3F , the adjacency

matrix of the graph with self-loops, bA˛RN3N, and the ground

truth membership matrix, Y˛RN3C (see Methods for a full

description of GCNs). Inspired by Qian et al.,22 we evaluate the

alignment between the ground truth Y and the graph-convolved

features XA : = bAX as:
Patterns 2, 100237, April 9, 2021 3
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Figure 2. The role of feature-derived graphs in classification

For a Figure360 author presentation of this figure, see https://doi.org/10.1016/

j.patter.2021.100237.

(A) In green, we show the alignment (Equation 1) of CkNN graphs for the AMiner

dataset as a function of the density parameter k. In red, classification accuracy

as in Figure 1B. The drop in classification accuracy corresponds to the drop in

the subspace alignment. Results for all graph constructions and datasets are

given in Figure S2.

(B) Ratio of class separation (Equation 2) computed from the output activations

of the GCN with CkNN graphs for AMiner dataset as a function of the density

parameter k, in brown. The results are averaged over ten runs with random

weight initializations; shaded region is the standard deviation. The brown

dashed line represents the RCS for the MLP, i.e., GCN with no graph. In red,

classification accuracy, as in Figure 1B. Below, we show two-dimensional t-

SNE projections of the output activations of GCNs with no graph, optimized

graph and over-dense graph. The nodes are colored according to the ground

truth class labels. The optimized graph induces higher class separability, as

shown by an increased RCS and better resolved t-SNE projection. Results for

all graph constructions and datasets are provided in Figure S3.
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S
�
X; bA;Y� = cosðq1ðXA;YÞÞ: (Equation 1)

Here, q1ðXA;YÞ is the minimal principal angle38–40 between the

column spaces of the matrices PCAðXA;p
�Þ and PCAðY ; p�Þ,

which contain the top principal components, as determined by
4 Patterns 2, 100237, April 9, 2021
the parameter p�, of bAX and Y, respectively. The parameter p�

is the ratio of explained variance that maximizes the Pearson

correlation between the alignment (Equation 1) and the classifi-

cation accuracy on the validation set.

Figure 2A shows the alignment (Equation 1) between the

ground truth and the graph-convolved data for CkNN graphs

of increasing density on the AMiner dataset. We find that the

reduction in classification accuracy induced by over-dense

graphs is linked to a strong disruption of the subspace align-

ment SðX; bA; YÞ. In the limit of the complete graph, the align-

ment approaches the value of 0, i.e., the minimal angle q1 =

p=2, indicating that the two subspaces are orthogonal. Sparse

graphs, on the other hand, induce a slight increase of the sub-

space alignment at the same time as improving the classifica-

tion accuracy. The alignment and classification accuracy show

good correlation for the AMiner dataset: the Pearson correla-

tion between alignment and accuracy (validation set) is 0.970,

obtained for a value of p� = 0:4. The same procedure has

been carried out for all seven datasets, and the results are pre-

sented in the Figure S2. The Pearson correlation coefficient be-

tween alignment and accuracy (validation set) ranges from

0.602 (Segmentation) to 0.970 (AMiner) with an average of

0.852 over all 7 datasets, thus indicating a good correspon-

dence between the classification accuracy and the graph-

induced alignment of data and ground truth.
Graphs with optimized density increase the ratio of
class separation
Another way of assessing the effect of the constructed graphs on

classification is to study the inherent separability of the probabi-

listic GCN assignment matrix, i.e., the row-stochastic matrix

Z˛RN3C of output activations in Equation 9. The effect of the

graph on Z reflects the quality of the classifier: a good graph

should enhance the separation of samples from different classes

while clustering together samples from the same class in C-

dimensional space. We quantify the separability of the GCNmap-

ping using Z
0˛RN32, the two-dimensional t-SNE41 embedding of

Z, onwhich we compute the ratio between the average inter-class

and intra-class distances, denoted ratio of class separation (RCS):

RCS=

�
1T

�
DðZ0 Þ+Minter

�
1
�.�

1TMinter1
��

1T
�
DðZ0 Þ+Mintra

�
1
�.�

1TMintra1
�: (Equation 2)

Here,DðZ0Þ is the Euclidean distancematrix for the t-SNE embed-

ding Z0, i.e., D
�
Z
0�

ij =
������Z 0

i � Z
0
j

������
2
; the notation + represents the

Hadamard, element-wise, matrix product; Minter˛RN3N is the in-

ter-class indicator matrix, i.e., Minter
ij = 1 if samples i and j belong

to different classes and Minter
ij = 0; otherwise, and conversely,

Mintra˛RN3N is the intra-class indicator matrix. Compactly,

we have

Minter = 11T � YYT

Mintra =YYT � IN;

where IN˛RN3N is the identity matrix and 1 is the N-dimensional

vector of ones.

https://doi.org/10.1016/j.patter.2021.100237
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Figure 3. Spectral sparsification of optimized geometric graphs can

further improve classification

For a Figure360 author presentation of this figure, see https://doi.org/10.1016/

j.patter.2021.100237.

(A) In red, the same data as in Figure 1B, i.e., classification accuracy of GCN

with CkNN graphs on AMiner dataset for increasing edge density; ten runs with

random weight initializations, shaded area is standard deviation. The large red

dot indicates the optimized graph found as edges are added (densification).

Starting from this optimized graph, we reduce the number of edges using the

SSSA (sparsification) and record the classification accuracy on the validation

set, in blue; ten runs with random weight initializations, shaded region is

standard deviation. The large blue dot indicates the optimized sparsified

graph. The gray dashed line corresponds to the classification accuracy of the

MLP (no graph) on the validation set. Results for all datasets are provided in

Figure S4.

(B) Comparison of optimized graphs obtained through the densification and

sparsification processes. The average degree of the graph (CDegreeD) and
classification accuracy in percent on the test set are reported; averaged over

ten runs with random weight initializations. Overall, sparsified graphs exhibit

improved accuracy on the test set with lower edge density.
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Figure 2B shows the RCS (Equation 2) computed from the

output activation of GCNs with CkNN graphs of increasing den-

sity (AMiner dataset). We observe a high correlation between

RCS and the classification accuracy (validation set): the Pearson

correlation coefficient for AMiner is 0.953. Similar figures for all

datasets are shown in the Figure S3. The Pearson correlation co-

efficient between RCS and accuracy (validation set) is high for all

datasets, ranging from 0.876 (Segmentation) to 0.976 (Cora),

with an average Pearson correlation coefficient of 0.938 across

all seven datasets. These results indicate that sparse graphs un-

fold the data and facilitate class separation, as illustrated by the

t-SNE plots and the increased RCS; on the other hand, over-

dense graphs reduce separability and eventually converge to

the mean field limiting value of RCS = 1, i.e., when there is no

distinction between inter- and intra-class separation.

Spectral sparsification of optimized geometric graphs
can further improve classification
Sparse graphs are generally favored over-dense graphs, in

particular for large datasets, as they are more efficient for both

numerical computation and data storage.We investigatewhether

it is possible to sparsify the optimized geometric graphs obtained

above, while preserving, or even improving, GCN classification

performance. Motivated by the key importance of spectral prop-

erties in graphpartitioning,42,43we apply the Spielman-Srivastava

sparsification algorithm (SSSA)28 to our optimized CkNN graphs.

The SSSA reduces the number of edges of a graph while preser-

ving the spectral content of the graph Laplacian given by Equa-

tion 8 (see Methods for a full description of the method).

We apply the SSSA to the optimized CkNN and select the spar-

sification that maximizes the classification accuracy on the vali-

dation set. Figure 3A shows that for the AMiner dataset it is

possible to improve the classification accuracy using sparser

graphs obtained with SSSA. This procedure was repeated for

all seven datasets (see Figure S4). For several of our datasets,

the sparsified graphs performbetter on the test datawith reduced

edge density (see Figure 3B). The results of the sparsification are

robust: starting the sparsification from three different highly opti-

mized CkNN graphs leads to similar results (see Figure S4 and

Table S4). Furthermore, the sparsification induces increased

alignment and RCS, which correlates with the improved classifi-

cation accuracy on the validation set (see Figures S5 and S6).

DISCUSSION

Our empirical study used datasets from different domains to

show that sparse geometric graphs constructed from data fea-

tures can aid classification tasks when used within the frame-

work of GNNs. It is worth noting that although here we have

used the widely popular GCN framework to perform the classi-

fication task, other advanced GNN architectures (e.g., Deep

Graph Infomax)44 could be incorporated in our pipeline as an

alternative to GCN for this purpose. In our numerics, GCN with

CkNN geometric graphs display the largest improvement in

classification accuracy (Table 1). This result is in line with recent

work on geometric graph construction for data clustering,45

which showed improved behavior of CkNN over other neighbor-

hood methods, such as kNN. CkNN graphs have been recently

proposed as a consistent discrete approximation of the Lap-
lace-Beltrami operator governing the diffusion on an underlying

manifold.27 Since GCN uses the graph to guide the diffusion of

features to neighboring nodes, this offers a natural explanation

for the good performance of CkNN under the GCN framework.

Within our graph construction methods, RMST graphs use a cri-

terion that balances neighborhood distances with non-local dis-

tances in the dataset. While RMST outperforms graph-less

methods, it does not outperform neighborhood-based methods

in the examples considered here. However, RMST graphs could

be appropriate for datasets where similarities based on longer

paths are important.

Intuitively, geometric graphs capture the closeness (i.e., simi-

larity) between samples in feature space, and can thus be helpful

to learn and channel class labels from known samples to unseen

similar samples. To gain further insight into why geometric

graphs can improve GCN classification performance, we

showed that the graph induces an increased alignment of fea-

tures and ground truth, as measured by the simple measure

(Equation 1). The alignment correlates well with classification
Patterns 2, 100237, April 9, 2021 5
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performance, specifically capturing the deleterious effect that

over-dense graphs have on classification performance (Fig-

ure 2A). When the graphs are over-dense, they lead to a mean

field averaging over the whole dataset, which breaks the align-

ment—an analogous problem to the over-smoothing observed

when there are too many layers in GCNs.46,47 We also showed

that graphs with appropriate density induce increased class

separability, as measured by the RCS (Equation 2) derived

from the GCN output activations, whereas over-sparse and

over-dense graphs lead to lower class separability (Figure 2B).

Deviating from strictly geometric graphs, we demonstrated

that spectral sparsification (SSSA) applied to the optimized

CkNN graphs can be used to reduce the number of edges while

still improving the classification performance (Figure 3). Our

choice of a spectral criterion for sparsification stems from the

fact that the preserved Laplacian quadratic form (Equation 8) is

strongly related to graph partitioning and community detec-

tion.42,43 The resulting efficient graphs are thus the product of

a mixed process: a geometric graph provides a local similarity

neighborhood, which is further sharpened using global graph

properties captured by the Laplacian spectrum.

Methods that leverage graphs in data analysis have a long his-

tory,48 and have been recently considered in conjunction with

deep-learning algorithms. Franceschi et al.33 proposed a novel

method that jointly learns graph structure and the parameters

of a GNN by solving a bilevel program to obtain a discrete prob-

ability distribution on the edges of the graph. We have compared

our method with the one proposed in Franceschi et al.33 Our re-

sults are summarized in Table S5 and indicate that our proposed

method achieves, on average, classification accuracy compara-

ble to Franceschi et al.,33 yet with a significantly smaller number

of parameters, thus simplifying the training and reducing the

inclination to overfitting. Table S5 also includes the results22 ob-

tained by applying GCN to datasets that contain a graph as an

additional source of information (i.e., the citation networks for

Cora and AMiner). The improved accuracy of GCN with these

original graphs stems from the additional information the graphs

contain, beyond what is present in the features alone. Specif-

ically, the original graphs for Cora and AMiner collate citations

between scientific articles, which encode additional information

about the similarity between articles not captured by the features

(i.e., the text embedding vectors) of the articles themselves.

Another recent method constructed a local neighborhood graph

as part of convolution-based classifiers.49 Our work, in contrast,

focuses on graph-theoretical measures,45 by exploring different

graph constructions and the importance of edge density and

spectral content for classification, and characterizing the effect

of graphs through geometric notions of separability and sub-

space alignment.22

Inour numerical experiments, feature-derivedgeometric graphs

appear to be most useful when the data are high-dimensional,

noisy, and co-linearity is present in the features. In particular,

GCN with optimized graphs outperforms the graph-less methods

in all our datasets except ‘‘Segmentation.’’ All our datasets are

high-dimensional without feature engineering except Segmenta-

tion, a dataset with 19 engineered features specifically optimized

for classification—this is the setup where SVM and RF are ex-

pected to work well. However, even in that case, we note that

the featured-derived graphs still improve the classification perfor-
6 Patterns 2, 100237, April 9, 2021
mance with respect to MLP, indicating that the graphs help filter

out feature similarities that can obscure the action of MLP.

Beyond the potential to improve performance, using graphs to

aid classification changes the paradigm from supervised to

semi-supervised learning. Supervised methods, e.g., MLP,

perform inductive learning, whereas graph-based semi-super-

vised learning can be either transductive or inductive. GCNs

belong to transductive learning, since the graph of the full dataset

is used for the training. Therefore, while potentially advantageous,

the use of GCNs can also restrict the generalizability to new sam-

ples. Inmanyapplicationssucha requirementdoesnot imposese-

vere restrictions, but graph-basedmethods can still be adapted to

classify new data without the need to recompute the model. For

instance, one could predict the class label of a newsampledirectly

from the output activations Z of the closest samples in the original

set, or using more elaborate diffusion-based schemes.8

Our proposed pipeline also shares common ground with some

of the most successful clustering methods developed for single-

cell genomics datasets. For example, Seurat50 uses Louvain

modularity optimization to perform community detection on a

kNN graph constructed from the top principal components of

data. Similarly, other methods for graph-based clustering have

been introduced usingmultiscale extensions of the Louvain algo-

rithm in the framework of Markov stability.45 Although classifica-

tion and clustering are different learning tasks, we have carried

out a comparison between our proposed method (CkNN+GCN)

and two Louvain-based clustering methods (Seurat and a

straightforward kNN+Louvain clustering). After optimizing each

method using the training and validation sets, we computed the

assignment it produces on the test set, and compared it with

the ground truth classes (see Note S2). The quality of the assign-

ments (evaluated with the Adjusted Rand Index and Normalized

Mutual Information) presented in Table S6 indicates that, on

average across our datasets, our proposed method performs

better than Seurat’s approach.

Our study opens several avenues for future work. Here, we

explored graph construction based on geometry; it will be inter-

esting to consider graph construction paradigms that incorpo-

rate other criteria, e.g., small-worlds,51 graph expanders,52 or

entangled networks,53 among others. Similarly, although we

showed that spectral sparsification54 is a good choice to

improve efficiency, other graph sparsification paradigms,

e.g., cut sparsification,55 might also be useful to achieve effi-

cient graphs for classification. Here, we have adopted the

Euclidean distance as a simple metric to base our geometric

graph construction. However, other metrics could be used in

our pipeline and could be indeed more appropriate for different

types of data. Investigating the effect of different distance met-

rics (such as the Manhattan distance, cosine similarity, or dis-

tances in transformed spaces, such as PCA or other projec-

tions), would be an important question for future research.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Mauricio Barahona (m.barahona@imperial.

ac.uk).
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Materials availability

This study did not generate any unique reagents.

Data and code availability

The datasets for graph construction can be found at https://github.com/

haczqyf/ggc/tree/master/ggc/data. The code for graph construction can be

found at https://github.com/haczqyf/ggc. The sources for other code (e.g.,

GCN and graph sparsification) are described in Note S3. The algorithm

complexity of our proposed pipeline has been discussed in Note S4. The run

time and memory requirements have been described in Note S5.
Methods

Graph construction

Let Xi be the F-dimensional feature vector (L1-normalized) of the i-th sample of

our dataset withN samples. The pairwise dissimilarity between samples i and j

is taken to be the Euclidean distance:

dði; jÞ = kXi � Xjk2: (Equation 3)

The distance matrix of all samples D˛RN3N, where Dij = dði; jÞ, is then used

to construct unweighted and undirected graphs based on different heuristics.

To guarantee connectedness over the dataset, we first construct theMST. The

MST is obtained from the Euclidean distance matrix D using the Kruskal algo-

rithm, and contains theN� 1 edges that connect all the nodes (samples) in the

graph with minimal sum of edge weights (distances). Once the weighted MST

is obtained, we ignore the edge weights, as is also done for all other graphs in

the paper. Thus the resulting graphs are undirected and unweighted. The 0-1

adjacency matrix of the MST is denoted by AMST. We then add edges to the

MST based on two types of criteria: (1) local neighborhoods or (2) balancing

local and global distances.

Methods based on local neighborhoods: Nearest neighbors. The objective of

neighborhood-based methods is to construct a sparse graph by connecting

two samples if they are local neighbors, as determined by dði; jÞ.
The simplest such algorithm is kNN. A kNN graph has an edge between two

samples i and j if one of them belongs to the k-nearest neighbors of the other.

The adjacency matrix AkNN˛RN3N of a kNN graph is defined by:

AkNN
i;j =

�
1 if dði; jÞ%dði; ikÞ or dði; jÞ%dðj; jkÞ
0 otherwise

; (Equation 4)

where ik and jk represent the k-th nearest neighbors of samples i and j,

respectively.

Although widely used, kNN has limitations. Perhaps most importantly, kNN

graphs can have highly heterogeneous degree distributions and often contain

hubs, i.e., samples with high number of connections, since kNN greedily con-

nects two samples as long as one of them belongs to the other’s k-nearest

neighbors. It has been suggested that the presence of hubs in kNN graphs

is particularly severe when the samples are high-dimensional.56 It has been

observed that hubs tend to deteriorate the classification accuracy of semi-su-

pervised learning.57

To overcome this limitation, the MkNN algorithm, a variant of kNN, was pro-

posed57. In an MkNN graph an edge is established between samples i and j if

each of thembelongs to the other’s k-nearest neighbors. The adjacencymatrix

AMkNN˛RN3N of the MkNN graph is defined by:

AMkNN
i;j =

�
1 if dði; jÞ%dði; ikÞ and dði; jÞ%dðj; jkÞ
0 otherwise

: (Equation 5)

Note that theMkNN algorithm guarantees that the degrees of all samples are

bounded by k. Therefore, MkNN reduces the presence of hubs when k is

adequately small.

Another limitation of kNN is its lack of flexibility to provide a useful, stable

graph when the data are not uniformly sampled over the underlying space,

which is often the case in practice.45 In such situations, it is difficult to find a

single value of k that can accommodate the disparate levels of sampling den-

sity across the data, since the kNN graphwill connect samples with very dispa-

rate levels of similarity depending on the region of the sample space (i.e., in

densely sampled regions, the graph only connects data points that are very

similar, whereas in poorly sampled regions, the graph connects data samples

that can be quite dissimilar). This disparity biases the training of the GCN. The
non-uniformity of the data distribution thus makes it difficult to tune a unique k

parameter that is appropriate across the whole dataset. If the value of k is too

small, the graph is dominated by local noise, and fails to provide consistent in-

formation to improve the GCN training. If the value of k is large, the resulting

graph is over-connected and leads GCN to degraded accuracy, close to

mean field classification. Hence, when the sampling is not homogeneous,

standard kNN graphs can be sub-optimal in capturing the underlying data

structure with a view to improved learning.

CkNN27 has recently been introduced to address this limitation by allowing

an adjusted local density. The adjacency matrix ACkNN˛RN3N associated with

a CkNN graph is defined by:

ACkNN
i;j =

�
1 if dði; jÞ<d ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dði; ikÞdðj; jkÞ
p

0 otherwise
; (Equation 6)

where the parameter d>0 regulates the density of the graph. For a fixed k, the

larger d is, the denser the CkNN graph becomes. Berry and Sauer27 show that

the CkNN graph captures the geometric features of the dataset with the addi-

tional consistency that the unnormalized Laplacian of the CkNN graph con-

verges spectrally to the Laplace-Beltrami operator in the limit of large data.

In this work, we fix d= 1 and vary k so that CkNN can be compared with

kNN and MkNN, as suggested in Liu and Barahona.45

All these three methods capture the geometry of local neighborhoods, with

global connectivity guaranteed by the MST.

Balancing local and global distances: RMST. Alternatively, other graph con-

structions attempt to balance the local geometry with a measure of global ge-

ometry extracted from the full dataset. In recent years, several algorithms have

been introduced to explore global properties of the data using the MST.29,45

Here, we focus on the RMST,29 which considers the largest distance

dmax
MST�pathði;jÞ encountered along the unique MST path between i and j. If

dmax
MST�pathði;jÞ is substantially smaller than dði; jÞ, RMST discards the direct link

between i and j, recognizing the multi-step MST path as a good model to cap-

ture the similarity between them. If, on the other hand, dði; jÞ is comparable with

dmax
MST�pathði;jÞ, the MST path does not provide a good model, and RMST adds

the direct link between i and j. The adjacency matrix ARMST˛RN3N associated

with an RMST graph is defined by:

ARMST
i;j =

(
1 if dði; jÞ<dmax

MST�pathði;jÞ +gðdði; ikÞ+dðj; jkÞÞ
0 otherwise

; (Equation 7)

where gR0 is the density parameter, and dði; ikÞ and dðj; jkÞ approximate the

local distribution of samples around i and j, respectively, as the distance to

their kth nearest neighbor.58 Here, we fix k = 1 and vary g to change the

edge density, as in Liu and Barahona.45

Spectral graph sparsification

The graph construction methods above can be thought of as a graph densifi-

cation, in which the starting point is theMST over theN samples and an edge is

added between two samples i and j if the distance dði; jÞ meets a defined cri-

terion. Graph sparsification operates in the opposite direction: starting from a

given graph, the goal is to obtain a sparser graph that approximates the orig-

inal graph so that it can be used, e.g., in numerical computations, without intro-

ducing too much error. Sparsified graphs are more efficient for both numerical

computation and data storage.54 Here, we focus on spectral graph sparsifica-

tion,54 and apply the seminal SSSA proposed in Spielman and Srivastava.28

SSSA obtains a spectral approximation of the given graph that satisfies the

following criterion:

ð1�sÞ xTLx% xT ~Lx%ð1 + sÞ xTLx; (Equation 8)

where x˛RN31 is a node vector, and L and ~L are the Laplacian matrices of the

original and sparsified graphs, respectively. For each dataset, we obtain

increasingly sparse versions of the optimized geometric graph computed

above by scanning over 50 values of the sparsity parameter s between 1=N

and 1. At each value of s, we run the GCN classifier 10 times starting from

random weight initializations and compute the average accuracy over the vali-

dation set.We then select the graphwith highest accuracy andmaximumspar-

sity. If sparsification does not improve performance on the test set, we report

the unsparsified graph as optimal (e.g., in Cora, Digits, and FMA in Figure 3B).
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GNNs, a new class of deep-learning algorithms, have been recently pro-

posed to analyze graph-structured data. Here, we focus on GCNs5 and their

application to semi-supervised learning. Each sample i is characterized by an

F-dimensional feature vector Xi˛R13F , which is arranged as a row of the

feature matrix X˛RN3F . In addition, the N samples are associated with a

graph G where the samples are the nodes and edges represent relational

(symmetric) information. The graph is described by an adjacency matrix

A˛RN3N. Each sample is also associated with one of C classes, which is en-

coded into a 0-1 membership matrix Y˛RN3C. GCNs train a model using the

full feature matrix X, the adjacency matrix A of the full graph, and a small

subset of ground truth labels, i.e., a few rows of Y. The obtained model is

then used to predict the class of unlabeled nodes and evaluate the classifi-

cation performance by comparing inferred labels with their ground truth

labels.

Our study applies the two-layer GCN proposed in Kipf and Welling.5 Given

the feature matrix X and the (undirected) adjacency matrix A of the graph G,
the propagation rule is given by:

Z = fðX;AÞ = softmax
� bA ReLU

� bAXW0
�
W1

�
; (Equation 9)

whereW0 andW1 are theweights connecting the layers of theGCN. The graph

is encoded in bA = ~D
�1=2ðA + INÞ ~D�1=2

, where IN is the identity matrix, and ~D is a

diagonal matrix with ~Dii = 1+
P
j

Aij . The softmax and ReLU are threshold acti-

vation functions:

ReLUðxÞi = maxðxi ; 0Þ (Equation 10)

softmaxðxÞi =
expðxiÞP
jexpðxjÞ

; (Equation 11)

where x is a vector. The cross-entropy error over all labeled samples is:

L = �
X
l˛YL

XC
c= 1

Ylc lnZlc; (Equation 12)

whereYL is the set of nodes that have labels (i.e., the training set). The weights

of the neural network (W0 and W1) are trained using gradient descent to mini-

mize the loss L.
In our case, the classification is based solely on information obtained from

the features since the graphs are also feature derived.

GCN architecture, hyperparameters, and implementation. We use the GCN

implementation provided by the authors of Kipf and Welling,5 and follow

closely the experimental setup in Kipf and co-workers.5,22 We use a two-layer

GCN with 2; 000 epochs (training iterations); learning rate of 0.01; and early

stopping with a window size of 200. Other hyperparameters are: dropout

rate, 0.5; L2 regularization, 53 10�4; number of hidden units, 16. The weights

are initialized as described in Glorot and Bengio,59 and the input feature vec-

tors are L1 row normalized. We choose the same dataset splits as in Qian

et al.,22 with 5% of samples as training set, 10% of samples as validation

set, and the remaining 85% as test set (see Table S1). The samples in the

training set are evenly distributed across classes.

Graph-less classification methods. For comparison, we consider four graph-

less classification methods: (1) MLP, which is equivalent to GCN with no

graph5,22; (2) kNNC based on the plurality vote of its k-nearest neighbors; (3)

SVM with Radial Basis Function kernel; and (4) RF. We use the Scikit-learn36

implementation for kNNC, SVM, and RF. For each method and each dataset,

we use the validation set to optimize the following hyperparameters: number of

neighbors (kNNC); regularization parameter (SVM); maximum depth (RF). All

other hyperparameters are set as default in Scikit-learn. We compare the

graph-less methods against the MLP = GCN (no graph), which is used as

the reference baseline.
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Supplemental Notes

Note S1: Data sets

We use seven data sets collected from various sources. We provide the data sets at https://github.com/
haczqyf/ggc/tree/master/ggc/data. The data set statistics are summarized in Table S1.

1. Constructive 1 is a synthetic data set generated by a stochastic block model that reproduces the ground
truth structure with some noise. Each ground truth cluster is associated with 50 features with a probability
of pin = 0.07 equal to 1. Each sample also has a probability of pout = 0.007 of possessing each feature
characterizing other clusters.

2. We consider two data sets with text documents: Cora1,2 and AMiner 3,4. In Cora and AMiner, the samples
are scientific papers where each paper is associated with a high-dimensional bag-of-words feature vector
extracted from the paper content. Each sample has a class label indicating its scientific field.

3. Digits is a handwritten digits data set. Each sample is a 8x8 image of a digit. This is one of the benchmark
data sets for classification in Scikit-learn5.

4. FMA: The original data set6,7 contains 140 audio features extracted from 7, 994 music tracks. We use this
data set to address the problem of genre classification. The original data set in Ref.6 contains 8 genres.
We sample randomly 2, 000 music tracks (250 for each genre) to produce our data set.

5. Cell : This is a data set of brain cell types from autism. The original data set8 contains the gene expression
values (log2 transformed 10x UMI counts from cellranger) of 104, 599 single cells from brains of control
individuals and of patients with autism, where each cell (sample) is characterized by the expression level
of 36, 501 genes (features). The full data set contains cells from 17 cell types (categories). To produce
our data set, we sample randomly 2, 000 cells from 10 cell types (200 cells for each type) and select as
our features the expression level of the top 500 most highly variable genes across the 2, 000 cells in our
sample.

6. Segmentation: This is an image segmentation data set, which is provided at UCI machine learning repos-
itory9 at https://archive.ics.uci.edu/ml/datasets/Image+Segmentation. Each sample represents
an image described by 19 high-level and man-crafted numeric-valued attributes.

Note S2: Comparison with Seurat clustering

Single-cell clustering is indeed an area where some of the gold standard methods are based on applying
community detection to graphs derived from cell features (e.g., gene expression levels) by using the Louvain
algorithm to maximize modularity. Seurat10 is such a graph-based clustering approach, where a kNN graph is
constructed from the PCA decomposition of the original feature vectors, and the obtained graph is then parti-
tioned into communities (corresponding to cell types) by Louvain modularity maximization.

It is important to remark that there is a fundamental distinction between the Seurat setting and our work.
While our method (CkNN+GCN) addresses a classification problem (supervised setting, in which some class
labels are known as ground truths and used in the training), Seurat solves a clustering problem (unsupervised
setting, in which there are no class labels available on which to train). Clustering aims to group similar samples
together and dissimilar samples into distinct groups based on the similarity between their features11. Seurat
clustering involves three steps: (i) compute the principal components of the feature vectors, and select the top
T principal components based on a choice of p, the ratio of explained variance to total variance; (ii) construct a
kNN graph based on the Euclidean distance between the vectors defined by the top T principal components of
each sample; and (iii) perform community detection on the kNN graph using Louvain modularity maximization.
In this process, several hyperparameters are chosen, including the ratio p, which determines the number of
principal components in step (i), and the number of neighbors k in the kNN graph in step (ii). The final result
of Seurat is a partition of the data set into clusters (‘graph communities’) derived intrinsically from properties of
the data.

Our method (CkNN+GCN), on the other hand, attempts a classification task where we leverage both the fea-
tures and a feature-derived CkNN graph of appropriate edge density to train the weights of a GCN in order to
maximize its classification power. Our use of GCN and CkNN is distinctive in this setting, as is the optimization
of the edge density of the graph to maximize the quality of the classification. Given that the objectives of Seu-
rat and our method are different, it is not straightforward to compare both approaches, but we have produced
a setting to compare both methods. In particular, we have devised a comparison between our CkNN+GCN

https://github.com/haczqyf/ggc/tree/master/ggc/data
https://github.com/haczqyf/ggc/tree/master/ggc/data
https://archive.ics.uci.edu/ml/datasets/Image+Segmentation


method and two Louvain-based clustering methods: Seurat (PCA+kNN+Louvain) and a simpler application of
Louvain to a kNN graph of features (kNN+Louvain) without applying PCA in the first step. These three methods
are compared to a simple kNN classifier (kNNC).

To compare the methods, we use the labels in the training and validation sets (defined as above in our
CkNN+GCN experiments) as ground truths, and tune the hyperparameters k and p (k is grid-searched over
[2, 4, 8, 16, 32, 64] and p is grid-searched over [0.5, 0.6, 0.7, 0.8, 0.9]) to maximize the similarity between the ob-
tained clusters and the ground truth partitions. Once the hyperparameters have been optimized, we then use
each method to cluster the data and we compute the quality of the clustering against the test set. To evaluate
the quality of the clustering we use two standard measures: the Adjusted Rand Index (ARI) and the Normal-
ized Mutual Information (NMI). Both of these measures are normalized between 0 (random assignment) and
1 (perfect agreement), with higher values signifying better assignment. Our results are presented in Table S6.
Our results show that our method (CkNN+GCN) performs better on average than both Louvain-based cluster-
ing methods on our data sets. Yet CkNN+GCN does not always outperform the other methods; in particular,
Seurat is the best on the Cell data set. This might reflect particularities of the Cell data set, which contains
high-dimensional vectors with high levels of noise that might benefit from the effective dimensionality reduction
and filtering that PCA enforces. On the other hand, CkNN+GCN has been kept as a broad-purpose method,
i.e., not optimized for a particular type of data. For instance, we use default values for some GCN hyperpa-
rameters (learning rate, number of hidden units, drop out rate) without optimizing them on each data set. The
aim is to provide robust outcomes across diverse data sets, as shown in Table S6. Hence, there is room to
potentially optimize our method (CkNN+GCN) specifically for single-cell genomics, but we feel this falls beyond
the scope of our current work, and will be investigated in future research.

Still, we would like to remark that clustering and classification algorithms are not directly comparable since
they have different objectives and learning contexts. Nonetheless, we hope that our additional experiments
provide some insight into the comparison.

Note S3: Code availability

We provide the data sets and code for geometric graph construction at https://github.com/haczqyf/ggc.
The code for Graph Convolutional Networks (GCNs) is provided by the authors of12 at https://github.
com/tkipf/gcn. The code for kNN Classification (kNNC), Support Vector Machine (SVM) and Random For-
est (RF) can be found at https://scikit-learn.org/stable/ from scikit-learn5. The code for Spielman-
Srivastava sparsification algorithm (SSSA) is available at https://epfl-lts2.github.io/gspbox-html/doc/
utils/gsp_graph_sparsify.html from Graph Signal Processing Toolbox13.

Note S4: Algorithm complexity

For a graph G = (V, E) with N nodes vi ∈ V and |E| edges (vi, vj) ∈ E , the time complexity for GCN, i.e., to
evaluate Equation (9), is O(|E|FHC)12, where |E| is the number of graph edges, F is the dimension of the
feature space, H is the number of units in the hidden layer and C is the number of classes in the ground
truth. Hence the computational complexity for GCN is linear in the number of graph edges. For the geo-
metric graph construction, a brute force approach to compute exactly a geometric graph (i.e., the kNN-type
graphs) has time complexity O(FN2). However, fast approximate kNN graph algorithms were proposed to
reduce this time complexity. We mention two examples: (i) Ref.14 proposes an algorithm with complexity
O(FN t) with 1 < t < 2, and (ii) Ref.15 proposes an algorithm that uses locality sensitive hashing, which has
complexity O

(
FN1/c2+o(1)

)
where c = 1 + ε > 1. For a thorough list of approximate kNN algorithms, see

https://github.com/stephenleo/adventures-with-ann/. Regarding spectral sparsification, the algorithm is nearly
linear with time complexity Õ(|E|)16, where the Õ notation ignores logarithmic factors. Finally, for the MST
construction, we use the Kruskal algorithm implemented in Scipy with time complexity O(|E|logN).

Note S5: Run time and memory requirements

To give a sense of run times and memory requirements for our algorithm, we summarize briefly the numbers
for the Cora data set, which presents the worst-case run times and storage requirements among our seven
examples. Indeed, we find that Cora has the longest run times, consistent with the algorithmic complexity in
Note S4, since Cora has the largest number of nodes and highest dimensions. For graph construction, cre-
ating and storing in disk all the graphs during the optimization of the hyperparameter takes around 13 hours
with a maximum used memory around 3G. However, our algorithm can be further optimized since the graphs
do not have to be stored and could be created and used on the fly to save memory usage and access time.

https://github.com/haczqyf/ggc
https://github.com/tkipf/gcn
https://github.com/tkipf/gcn
https://scikit-learn.org/stable/
https://epfl-lts2.github.io/gspbox-html/doc/utils/gsp_graph_sparsify.html
https://epfl-lts2.github.io/gspbox-html/doc/utils/gsp_graph_sparsify.html


Furthermore, over-dense graphs could be avoided altogether since the optimized graphs usually are relatively
sparse. Indeed, we find that the graphs with optimal accuracy have densities on the order of 0.005 − 0.05 of
the total number of possible edges (see Table S3), and for densities above ∼ 0.1 the accuracy drops below the
accuracy of an MLP. For higher densities, the accuracy consistently degrades towards the random assignment
limit. Therefore the grid search of the hyperparameter can be restricted to low density graphs, and dense
graphs do not have to be stored or computed. The search for the optimal hyperparameter can be further aided
with a bisection scheme and could be parallelized to improve the efficiency of the optimization.

For a thorough description of the complexity of the different blocks of our algorithm (GCN, kNN and MST
graph constructions, and spectral sparsification) see Note S4. For each value of the hyperparameter, we run a
GCN 10 times from 10 random initializations. The cost of each GCN is moderate: the complexity of GCN scales
nearly linearly with the number of edges of the graph. The cost of constructing kNN-type graphs (originally of
O(N2)) can also be reduced to nearly linear in the number of nodes with approximation algorithms. Sparsi-
fication is also nearly linear, as shown by Spielman. Hence the methodology has the potential to be applied
to relatively large graphs with further code optimization. For instance, each GCN for Cora takes typically less
than 7 minutes for relatively sparse graphs (k ≤ 200), and each graph sparsification takes less than 2 minutes.

Comparing to the Louvain-based methods, there is the same complexity for the kNN graph construction,
whereas the run time complexity of Louvain optimization is O(N log2N). For Seurat, there is the additional
cost of performing PCA to extract the top T principal components, with complexity O(N2T ) (inherited from
randomized SVD). Thus, the run time complexity and memory requirements of the Louvain-based methods
are comparable to those of our method.

Supplemental Tables and Figures

Table S1: Summary statistics of the data sets in our study.

Data sets Type Samples (N ) Features (F ) Classes (C) Train/Validation/Test

Constructive Stochastic block model 1, 000 500 10 50/100/850
Cora Text (Bag-of-words) 2, 485 1, 433 7 119/253/2, 113

AMiner Text (Bag-of-words) 2, 072 500 7 98/212/1, 762
Digits Images (Grayscale pixels) 1, 797 64 10 80/189/1, 528

FMA (songs) Music track features 2, 000 140 8 96/204/1, 700
Brain cell types Single-cell transcriptomics 2, 000 500 10 100/200/1, 700
Segmentation Image features 2, 310 19 7 112/234/1, 964

Table S2: Classification accuracy (in percent) on the test set (average and standard deviation over 10 runs
with random initializations) for 7 data sets with 8 classifiers (four graph-less methods; GCN with four graph
constructions).

Classifier Constructive Cora AMiner Digits FMA Cell Segmentation

MLP = GCN (No graph) 42.1 ± 1.2 54.2 ± 1.7 54.4 ± 1.1 82.0 ± 1.3 34.3 ± 0.8 79.5 ± 3.0 72.0 ± 2.4
kNNC 31.4 ± 0.0 38.2 ± 0.0 28.0 ± 0.0 88.3 ± 0.0 30.6 ± 0.0 58.7 ± 0.0 68.8 ± 0.0
SVM 40.0 ± 0.0 55.9 ± 0.0 51.4 ± 0.0 87.7 ± 0.0 35.3 ± 0.0 81.5 ± 0.0 87.7 ± 0.0
RF 36.3 ± 1.0 56.1 ± 1.2 47.7 ± 1.5 83.0 ± 0.5 33.0 ± 0.9 88.0 ± 0.7 88.8 ± 0.7

GCN (kNN) 53.9 ± 0.9 66.4 ± 0.6 59.2 ± 1.3 92.0 ± 0.4 35.6 ± 1.0 83.8 ± 1.6 83.5 ± 0.7
GCN (MkNN) 45.2 ± 1.6 64.1 ± 0.4 61.8 ± 0.8 93.2 ± 0.3 35.6 ± 0.7 84.0 ± 2.0 83.0 ± 0.6
GCN (CkNN) 51.1 ± 1.3 66.6 ± 0.4 61.6 ± 0.8 93.4 ± 0.3 36.0 ± 0.8 84.0 ± 2.1 83.9 ± 0.6
GCN (RMST) 45.9 ± 1.5 64.8 ± 0.6 61.5 ± 1.3 89.3 ± 0.5 35.4 ± 0.7 84.9 ± 1.1 83.0 ± 1.6



Table S3: Selected density parameters and density of constructed graphs in the graph densification process
(Figure S1).

kNN MkNN CkNN (δ = 1) RMST (k = 1)
Data set k∗ Density k∗ Density k∗ Density γ∗ Density

Constructive 9 0.01741 104 0.02101 33 0.00920 0.07421 0.02724
Cora 12 0.00842 39 0.00436 74 0.01476 0.02924 0.01242

AMiner 8 0.00748 199 0.01786 199 0.03852 0.02317 0.00859
Digits 5 0.00404 39 0.01400 33 0.01564 0.00346 0.00117
FMA 1 0.00100 2 0.00103 13 0.00398 0.00146 0.00107
Cell 1 0.00100 8 0.00133 41 0.00753 0.00320 0.00124

Segmentation 7 0.00387 20 0.00637 12 0.00447 0.03423 0.00117
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Figure S1: Graph construction search in the densification process. The red line indicates the mean classifi-
cation accuracy on the validation set of 10 runs with random weight initializations as a function of the density
parameter. The red shaded regions denote the standard deviation. The mean classification accuracy on the
validation of two limiting cases (no graph and complete graph) are added as well. The red vertical line indicates
the optimized graph. The purple line shows the densities of the constructed graphs.
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Figure S2: The red line indicates the mean classification accuracy on the validation set of 10 runs with random
weight initializations as a function of the density parameter. The red shaded regions denote the standard
deviation. The green line indicates the alignment. We report the Pearson correlation coefficients and p-values
between mean accuracy and alignment. ∗p-value < 0.05,∗∗ p-value < 0.01,∗∗∗ p-value < 0.001.



10
0

10
1

10
2

10
3

k

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.968***

10
0

10
1

10
2

10
3

k

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.969***

10
0

10
1

10
2

10
3

k

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.972***

10
3

10
2

10
1

0.1

0.2

0.3

0.4

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.895***

No graph

10
0

10
1

10
2

10
3

k

0.0
0.1
0.2
0.3
0.4
0.5
0.6

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.981***

10
0

10
1

10
2

10
3

k

0.1

0.2

0.3

0.4

0.5

0.6

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.981***

10
0

10
1

10
2

10
3

k

0.1

0.2

0.3

0.4

0.5

0.6

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.976***

10
3

10
2

10
10.1

0.2

0.3

0.4

0.5

0.6

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.984***

10
0

10
1

10
2

10
3

k

0.1

0.2

0.3

0.4

0.5

0.6

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.983***

10
0

10
1

10
2

10
3

k

0.1
0.2
0.3
0.4
0.5
0.6
0.7

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.975***

10
0

10
1

10
2

10
3

k

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.953***

10
3

10
2

10
1

0.1
0.2
0.3
0.4
0.5
0.6

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.980***

10
0

10
1

10
2

10
3

k

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.943***

10
0

10
1

10
2

10
3

k

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.933***

10
0

10
1

10
2

10
3

k

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)
r=0.938***

10
3

10
2

10
1

10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.973***

10
0

10
1

10
2

10
3

k

0.1

0.2

0.3

0.4

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.927***

10
0

10
1

10
2

10
3

k

0.2

0.3

0.4

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.876***

10
0

10
1

10
2

10
3

k

0.2

0.3

0.4

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.889***

10
3

10
2

10
1

0.2

0.3

0.4

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.885***

10
0

10
1

10
2

10
3

k

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.962***

10
0

10
1

10
2

10
3

k

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.960***

10
0

10
1

10
2

10
3

k

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.961***

10
3

10
2

10
1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.966***

10
0

10
1

10
2

10
3

k

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.866***

10
0

10
1

10
2

10
3

k

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.897***

10
0

10
1

10
2

10
3

k

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.876***

10
3

10
2

10
1

10
0

10
10.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
cc

ur
ac

y 
(V

al
id

at
io

n 
se

t)

r=0.906***

1.0

1.2

1.4

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nConstructive (kNN)

1.0

1.1

1.2

1.3

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nConstructive (MkNN)

1.0

1.1

1.2

1.3

1.4

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nConstructive (CkNN)

1.0

1.1

1.2

1.3

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nConstructive (RMST)

No graph

1.0

1.2

1.4

1.6

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nCora (kNN)

1.0

1.2

1.4

1.6

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nCora (MkNN)

1.0

1.2

1.4

1.6

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nCora (CkNN)

1.0

1.2

1.4

1.6

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nCora (RMST)

1.0

1.2

1.4

1.6

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nAMiner (kNN)

1.0

1.2

1.4

1.6

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nAMiner (MkNN)

1.0

1.2

1.4

1.6

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nAMiner (CkNN)

1.0

1.2

1.4

1.6

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nAMiner (RMST)

1

2

3

4

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nDigits (kNN)

1

2

3

4

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nDigits (MkNN)

1

2

3

4

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nDigits (CkNN)

1

2

3

4

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nDigits (RMST)

1.0

1.1

1.2

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nFMA (kNN)

1.0

1.1

1.2

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nFMA (MkNN)

1.1

1.2

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nFMA (CkNN)

1.1

1.2

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nFMA (RMST)

1

2

3

4

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nCell (kNN)

1

2

3

4

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nCell (MkNN)

1

2

3

4
R

at
io

 o
f c

la
ss

 s
ep

ar
at

io
nCell (CkNN)

2

3

4

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nCell (RMST)

1.0

1.5

2.0

2.5

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nSegmentation (kNN)

1.0

1.5

2.0

2.5

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nSegmentation (MkNN)

1.0

1.5

2.0

2.5

3.0

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nSegmentation (CkNN)

1.5

2.0

2.5

R
at

io
 o

f c
la

ss
 s

ep
ar

at
io

nSegmentation (RMST)

Figure S3: The red line indicates the mean classification accuracy on the validation set of 10 runs with random
weight initializations as a function of the density parameter. The red shaded regions denote the standard
deviation. The red dashed line represents the mean classification accuracy on the validation of no graph case.
The brown line shows the ratio of class separation in the densification process. The brown shaded regions
denote the standard deviation. The brown dashed line represents the ratio of class separation of no graph
case. We report the Pearson correlation coefficients and p-values between mean accuracy and mean ratio of
class separation. ∗p-value < 0.05,∗∗ p-value < 0.01,∗∗∗ p-value < 0.001.
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Figure S4: Graph construction search in the sparsification process. The blue line indicates the mean classifi-
cation accuracy on the validation set of 10 runs with random weight initializations as a function of the density
parameter. The blue shaded regions denote the standard deviation. The mean classification accuracy on the
validation of no graph is added as well. The blue vertical line indicates the optimized graph on the validation
set. The purple line shows the densities of the sparsified graphs.



Table S4: Comparison between optimized CkNN and sparsification of optimized CkNN graphs (Figure S4).

Top 4 CkNN graphs Optimized CkNN Sparsification of optimized CkNN
on validation set Data set k∗ Edge density 〈Degree〉 Accuracy (Test) σ∗ Edge density 〈Degree〉 Accuracy (Test)

(1)

Constructive 33 0.00920 9.2 51.1 0.3479 0.00630 6.3 51.6
Cora 74 0.01476 36.7 66.6 0 0.01476 36.7 66.6

AMiner 199 0.03852 79.8 61.6 0.1618 0.01840 38.1 62.5
Digits 33 0.01564 28.1 93.4 0 0.01564 28.1 93.4
FMA 13 0.00398 8.0 36.0 0 0.00398 8.0 36.0
Cell 41 0.00753 15.0 84.0 0.5212 0.00240 4.8 85.0

Segmentation 12 0.00447 10.3 83.9 0.3806 0.00356 8.2 84.0

Average improvement (+8.3) (+8.7)

(2)

Constructive 51 0.01445 14.4 51.8 0.1898 0.01197 12.0 53.6
Cora 46 0.00897 22.3 66.3 0 0.00897 22.3 66.3

AMiner 233 0.04838 100.2 61.3 0.1418 0.02396 49.6 63.6
Digits 28 0.01319 23.7 93.2 0.4222 0.00556 10.0 93.2
FMA 22 0.00713 14.3 35.2 0.3018 0.00561 11.2 35.8
Cell 35 0.00625 12.5 83.6 0.6409 0.00176 3.5 86.9

Segmentation 7 0.00253 5.8 84.0 0.2607 0.00252 5.8 84.2

Average improvement (+8.1) (+9.3)

(3)

Constructive 16 0.00618 6.2 49.0 0 0.00618 6.2 49.0
Cora 39 0.00756 18.8 66.8 0 0.00756 18.8 66.8

AMiner 171 0.03115 64.5 62.1 0.1618 0.01656 34.3 63.5
Digits 21 0.00978 17.6 92.9 0.3425 0.00650 11.7 93.0
FMA 41 0.01457 29.1 35.9 0 0.01457 29.1 35.9
Cell 48 0.00904 18.1 81.9 0.7806 0.00141 2.8 84.1

Segmentation 14 0.00522 12.1 83.8 0 0.00522 12.1 83.8

Average improvement (+7.7) (+8.2)

(4)

Constructive 22 0.00697 7.0 51.2 0.3084 0.00605 6.0 51.4
Cora 63 0.01246 30.9 65.9 0 0.01246 30.9 65.9

AMiner 78 0.01071 22.2 62.0 0.1019 0.01021 21.1 62.1
Digits 24 0.01125 20.2 92.9 0 0.01125 20.2 92.9
FMA 19 0.00601 12.0 34.5 0.6808 0.00201 4.0 35.2
Cell 30 0.00527 10.5 81.8 0.9601 0.00099 2.0 85.3

Segmentation 10 0.00372 8.6 83.9 0.2607 0.00365 8.4 84.1

Average improvement (+7.7) (+8.3)
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Figure S5: The blue line indicates the mean classification accuracy on the validation set of 10 runs with random
weight initializations as a function of the density parameter. The blue shaded regions denote the standard
deviation. The green line indicates the alignment. We report the Pearson correlation coefficients and p-values
between mean accuracy and alignment. ∗p-value < 0.05,∗∗ p-value < 0.01,∗∗∗ p-value < 0.001.
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Figure S6: The blue line indicates the mean classification accuracy on the validation set of 10 runs with random
weight initializations as a function of the density parameter. The blue shaded regions denote the standard
deviation. The blue dashed line represents the mean classification accuracy on the validation of no graph
case. The brown line shows the ratio of class separation in the sparsification process. The brown shaded
regions denote the standard deviation. The brown dashed line represents the ratio of class separation of no
graph case. We report the Pearson correlation coefficients and p-values between mean accuracy and mean
ratio of class separation. ∗p-value < 0.05,∗∗ p-value < 0.01,∗∗∗ p-value < 0.001.

Table S5: Classification accuracy (test set) obtained with three free feature-only methods: MLP,
kNN+LDS+GCN6, and CkNN+GCN (this paper). For information, we also include the accuracy achieved by
GCN applied to features together with the additional graph given in the original data set (when available).

Method Cora AMiner Digits FMA Cell Segmentation Avg. improvement

MLP 54.2 54.4 82.0 34.3 79.5 72.0 —
kNN+LDS+GCN6 69.0 59.3 94.6 36.2 80.0 83.9 (+7.8)

CkNN + GCN (this paper) 66.6 61.6 93.4 36.0 84.0 83.9 (+8.2)

Additional original graph + GCN 81.1 74.8 – – – – –



Table S6: Quality of assignments (test set) obtained by a simple kNN classifier (kNNC), two Louvain-based
methods (kNN+Louvain, Seurat), and our method (CkNN+GCN). The hyperparameters of all methods (kNNC,
Louvain methods, and CkNN+GCN) were optimized on the training and validation sets. Two quality measures
are computed (ARI and NMI), both normalized between 0 and 1, with higher values indicating better agreement
with the ground truth of the test set. The average improvement with respect to the kNNC is also presented in
the last column.

ARI

Method Cora AMiner Digits FMA Cell Segmentation Avg. improvement

kNNC 0.090 0.036 0.766 0.087 0.434 0.456 —
kNN+Louvain 0.337 0.301 0.840 0.086 0.721 0.273 0.115

Seurat=PCA+kNN+Louvain 0.321 0.305 0.888 0.086 0.822 0.189 0.124
CkNN+GCN (this paper) 0.382 0.348 0.863 0.108 0.767 0.702 0.217

NMI
Method Cora AMiner Digits FMA Cell Segmentation Avg. improvement

kNNC 0.130 0.131 0.806 0.123 0.644 0.532 —
kNN+Louvain 0.386 0.323 0.892 0.125 0.811 0.513 0.114

Seurat=PCA+kNN+Louvain 0.391 0.356 0.904 0.118 0.904 0.350 0.110
CkNN+GCN (this paper) 0.408 0.409 0.889 0.147 0.854 0.753 0.183
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